ChromTR:chromosome detection in raw metaphase cell images via deformable transformers  

在线阅读下载全文

作  者:Chao Xia Jiyue Wang Xin You Yaling Fan Bing Chen Saijuan Chen Jie Yang 

机构地区:[1]Institute of Image Processing and Pattern Recognition,Shanghai Jiao Tong University,Shanghai,200240,China [2]Shanghai Institute of Hematology,State Key Laboratory of Medical Genomics,National Research Center for Translational Medicine at Shanghai,Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Shanghai,200025,China

出  处:《Frontiers of Medicine》2024年第6期1100-1114,共15页医学前沿(英文版)

基  金:supported by the National Natural Science Foundation of China(No.81670137);SJTU Trans-med Awards Research(No.20220102);State Key Laboratory of Medical Genomics Support(No.201802)。

摘  要:Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases,of which chromosome detection in raw metaphase cell images is the most critical and challenging step.In this work,focusing on the joint optimization of chromosome localization and classification,we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images.ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework.Specifically,we first propose a Semantic Feature Learning Network(SFLN)for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision.Next,we construct a Semantic-Aware Transformer(SAT)with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features.To provide a prediction with a precise chromosome number and category distribution,a Category Distribution Reasoning Module(CDRM)is built for foreground-background objects and chromosome class distribution reasoning.We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022.Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56%in R-band chromosome detection,surpassing the baseline method by 3.02%.In a clinical test,ChromTR is also confident in tackling normal and numerically abnormal karyotypes.When extended to the chromosome enumeration task,ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets.Given these superior performances to other methods,our proposed method has been applied to assist clinical karyotype diagnosis.

关 键 词:chromosome detection deformable transformer metaphase cell image distribution reasoning 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象