一种用于管道检测的平面L形电涡流传感器  

Planar L-shaped Eddy Current Sensor for Pipeline Inspection

作  者:卢亚丁 雷华明[1,2] LU Yading;LEI Huaming(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University;Key Laboratory of Marine Intelligent Equipment and System Ministry of Education,Shanghai Jiao Tong University)

机构地区:[1]上海交通大学电子信息与电气工程学院 [2]上海交通大学海洋智能装备与系统教育部重点实验室

出  处:《仪表技术与传感器》2025年第1期1-6,共6页Instrument Technique and Sensor

基  金:国家自然科学基金项目(52075339)。

摘  要:在金属油气管道检测中,传感器性能至关重要。针对传统涡流检测对特定方向上缺陷检测效果较差的问题,提出了一种L形差分线圈设计。首先,分析了激励线圈的磁场空间分布,以确定线圈设计的基本要求;然后,利用COMSOL有限元软件构建了检测系统模型,并对不同传感器线圈的检测性能进行模拟;最后,制造了基于PCB的电涡流传感器并对其进行了仿真与实验验证。仿真结果表明:该L形电涡流传感器在检测轴向缺陷时的差分信号较传统方法提升了122%,并对不同方向的缺陷具有近似的敏感度。实验进一步验证了该传感器能有效地检测管道内各个方向的不同缺陷,具有小体积、低成本、低功耗等优点,特别适用于小口径管道的检测。In the detection of metal oil and gas pipelines,the performance of sensors is very important.An innovative design of L-shaped differential coils was proposed to address the issue of poor effect of traditional eddy current testing on defect detection in a specific direction.Firstly,the spatial distribution of the magnetic field of the excitation coil was analyzed to determine the basic requirements of the coil design.Secondly,the detection system model was constructed with COMSOL finite element software,and the detection performance of different sensor coils is simulated.Finally,the eddy current sensor based on PCB was manufactured and verified by simulation and experiment.The simulation results show that the differential signal of the L-shaped eddy current sensor in detecting axial defects is 122%higher than that of the traditional method,and has approximate sensitivity to defects in different directions.Experiments further verify that the sensor can effectively detect different defects in all directions in the pipeline.The L-shaped sensor has advantages such as small size,low cost,and low power consumption,especially suitable for the detection of small diameter pipeline.

关 键 词:涡流传感器 线圈设计 无损检测 管道检测 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象