检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张国庆 常素萍[1] 茅昕 王国强 刘尚军 卢文龙[1] ZHANG Guoqing;CHANG Suping;MAO Xin;WANG Guoqiang;LIU Shangjun;LU Wenlong(School of Mechanical Science and Engineering,Huazhong University of Science and Technology;State Key Laboratory of Optical Fiber and Cable Manufacture Technology,Yangtze Optical Fiber and Cable Joint Stock Limited Company;Wuhan Maritime Communication Research Institute)
机构地区:[1]华中科技大学机械科学与工程学院 [2]长飞光纤光缆股份有限公司光纤光缆制备技术国家重点实验室 [3]武汉船舶通信研究所
出 处:《仪表技术与传感器》2025年第1期98-104,共7页Instrument Technique and Sensor
基 金:国家重点研发计划项目(2022YFE0128800);光纤光缆制备技术国家重点实验室(长飞公司)开放课题(SKLD2103)。
摘 要:针对稀疏投影下保偏光纤轴向残余应力重建时存在的伪影噪声问题,提出一种基于深度学习的正则化迭代重建算法。基于光弹原理与断层扫描分析光纤轴向残余应力的二维分布重建,在稀疏投影测量中,现有的滤波反投影法实现Radon逆变换进行应力重建存在伪影噪声问题;分析保偏光纤轴向残余应力测量的离散投影模型,针对稀疏投影导致的不适定问题,引入广义正则项,分析了应力的正则化迭代重建;通过深度学习,从样本中学习广义正则项的具体形式,并用训练好的模型进行仿真实验。对5种保偏光纤的重建结果表明:该方法在稀疏投影测量中同时具备很好的伪影噪声抑制与细节特征保持能力,在投影数目为36个视角时均方根误差为0.1985 MPa、峰值信噪比为47.3445 dB、结构相似性指数达到0.9951,分别提升59.7%、18.4%、1.34%;单个样本的重建时间低于1 s,可以实现应力的快速、准确重建。To address the issue of artifact noise during the reconstruction of axial residual stress in polarization-maintaining fiber under sparse-view,a deep learning-based regularized iterative reconstruction algorithm was proposed.Based on the principles of photoelasticity and tomography,the two-dimensional distribution of axial residual stress in fiber reconstruction was analyzed.In sparse-view measurement,the existing filtered back projection method that implemented Radon inversion for stress reconstruction suffered from artifact noise issues.The discrete projection model of the measurement of axial residual stress in polarization-maintaining fiber was analyzed,and considering the ill-posed problem caused by sparse-view sampling,a generalized regularization term was introduced,and the regularization iterative reconstruction of stress was analyzed.The specific form of the generalized regularization term was learned from samples through deep learning,and simulation experiments were conducted using the trained model.The reconstruction results for five types of polarization-maintaining fibers show that this method possesses excellent capabilities in suppressing artifact noise and preserving detail features in sparse-view measurements.With 36 projection angles,the root mean square error is 0.1985 MPa,the peak signal-to-noise ratio is 47.3445 dB,and the structural similarity index reaches 0.9951,representing improvements of 59.7%,18.4%,and 1.34%respectively.The reconstruction time for a single sample is less than 1 second,allowing for rapid and accurate reconstruction of stress.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70