考虑时域自适应的永磁直驱电机模型预测控制  

Predictive Control of Permanent Magnet Direct-drive Motor Model Considering Adaptive Time Domain

作  者:赵金阳 杜钦君[1] 徐执诏 马炳图 吴育桐 ZHAO Jinyang;DU Qinjun;XU Zhizhao;MA Bingtu;WU Yutong(School of Electrical and Electronic Engineering,Shandong University of Technology)

机构地区:[1]山东理工大学电气与电子工程学院

出  处:《仪表技术与传感器》2025年第1期112-119,共8页Instrument Technique and Sensor

基  金:国家自然科学基金项目(62076152);山东省科技型中小企业创新能力提升项目(2022TSGC1186,2023TSGC0966)。

摘  要:永磁直驱电机运行时负载变化及电机内部参数变化,导致输出转矩产生波动。为提高伺服系统运动性能,提出了一种改进型连续控制集预测转矩控制方法。根据速度误差判断电机的运行状态,利用自适应函数对电机处于暂态、稳态不同工况下在线调整预测步数、预测步长以及控制周期,采用增量模型消除磁链对预测控制的影响。针对直驱系统易受外部扰动的影响,设计了具有可变增益的龙伯格观测器,使观测器在电机稳态和暂态时分别采用不同的增益,并超前一步观测负载转矩,提高观测器的观测性能。进行了仿真实验,验证所提方法的有效性。When the permanent magnet direct drive motor is running,the load changes and the internal parameters of the motor change,resulting in the output torque fluctuation.In order to improve the motion performance of the servo system,an improved continuous set prediction torque control method was proposed.According to the speed error,the running state of the motor was judged,and the adaptive function was used to adjust the predicted step number,prediction step length and control period online under different working conditions of the motor in the temporary and steady state,and the incremental model was used to eliminate the influence of flux on the predictive control.In view of the susceptibility of the direct drive system to external disturbances,a Luenberger observer with variable gain was designed,so that the observer adopted different gains in the steady state and transient state of the motor,and observed the load torque one step ahead to improve the observation performance of the observer.Finally,simulations and experiments were carried out to verify the effectiveness of the proposed method.

关 键 词:永磁直驱电机 自适应函数 增量模型 模型预测转矩控制 龙伯格观测器 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象