Wavelet Characterizations of Variable Anisotropic Hardy Spaces  

作  者:Yao He Yong Jiao Jun Liu 

机构地区:[1]School of Mathematics and Statistics,Central South University,Changsha 410075,P.R.China [2]School of Mathematics,JCAM,China University of Mining and Technology,Xuzhou 221116,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2025年第1期304-326,共23页数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.12371102 and 12001527);the Natural Science Foundation of Jiangsu Province(Grant No.BK20200647);the Postdoctoral Science Foundation of China(Grant No.2021M693422)。

摘  要:Let p(·):R^(n)→(0,∞]be a variable exponent function satisfying the globally log-H¨older continuous condition and A a general expansive matrix on R^(n).Let H_A~(p(·))(R^(n))be the variable anisotropic Hardy space associated with A.In this paper,via first establishing a criterion for affirming some functions being in the space H_(A)^(p(·))(R^(n)),the authors obtain several equivalent characterizations of H_(A)^(p(·))(R^(n))in terms of the so-called tight frame multiwavelets,which extend the well-known wavelet characterizations of classical Hardy spaces.In particular,these wavelet characterizations are shown without the help of Peetre maximal operators.

关 键 词:Variable exponent Hardy space expansive matrix WAVELET ATOM 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象