公路沥青混合料试验检测方法优化  

Optimization of Test and Detection Methods for Highway Asphalt Mixtures

在线阅读下载全文

作  者:陈骏 CHEN Jun(Guizhou Jianyang Highway Technology Consulting Co.,Ltd.)

机构地区:[1]贵州建养公路技术咨询有限公司

出  处:《广东建材》2025年第2期88-91,共4页Guangdong Building Materials

摘  要:在公路沥青混合料的试验检测领域中,传统的级配检测方法往往面临精确度不足和对试件破坏性的问题。这限制了对沥青混合料内部结构的深入了解,影响了材料性能的全面评估。为了解决这些问题,本研究采用了CT扫描和数字图像处理技术对沥青混合料的级配检测方法进行了创新性改进。通过CT扫描技术,能够详细捕捉沥青混合料马歇尔试件的内部结构,并获取高清晰度的数字图像。随后,通过去噪、增强和分割处理,实现了伪三维级配的精准识别。研究结果显示,对于直径大于2.36毫米的集料,使用CT技术后,经过误差校正的级配曲线与设计级配曲线的吻合度显著提高,从而有效提升了识别精度。这种基于CT技术的检测方法不仅提供了沥青混合料内部细观结构的深入观察,还实现了非侵入性检测,避免了对试件的破坏,为沥青混合料的宏观性能研究开辟了新的途径。In the field of experimental testing of highway asphalt mixtures,traditional grading testing methods often face problems of insufficient accuracy and destructive effects on specimens.This limits the in-depth understanding of the internal structure of asphalt mixtures and affects the comprehensive evaluation of material properties.To address these issues,this study innovatively improved the grading detection method of asphalt mixtures using CT scanning and digital image processing techniques.Through CT scanning technology,it is possible to capture the internal structure of Marshall specimens of asphalt mixtures in detail and obtain high-definition digital images.Subsequently,precise recognition of pseudo 3D grading was achieved through denoising,enhancement,and segmentation processing.The research results show that for aggregates with a diameter greater than 2.36 millimeters,the use of CT technology significantly improves the consistency between the error corrected grading curve and the design grading curve,thereby effectively improving the recognition accuracy.This CT based detection method not only provides in-depth observation of the internal microstructure of asphalt mixtures,but also achieves non-invasive detection,avoiding damage to specimens and opening up new avenues for the study of macroscopic performance of asphalt mixtures.

关 键 词:CT扫描技术 沥青混合料级配检测 数字图像处理 

分 类 号:U414[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象