一类图的Tutte多项式  

Tutte polynomial for a class of graph

作  者:王树新[1] 刘艳梅 姜蕾 王佳琦 WANG Shuxin;LIU Yanmei;JIANG Lei;WANG Jiaqi(School of Mathematics,Liaoning Normal University,Dalian 116081,China)

机构地区:[1]辽宁师范大学数学学院,辽宁大连116081

出  处:《高师理科学刊》2025年第1期13-16,39,共5页Journal of Science of Teachers'College and University

基  金:辽宁省属本科高校基本科研业务费专项资金资助项目(LJ212410165006)。

摘  要:正符号图与交错链环具有确定的对应关系,一般利用拆接关系计算交错链环的琼斯多项式,但相应计算量较大,计算过程繁杂.利用Tutte多项式的定义,计算了一类正符号图的Tutte多项式.根据图的Tutte多项式与交错链环琼斯多项式的关系,运用所得结果可简化一类多交叉点交错链环的琼斯多项式的计算.The positive-signed graph has a definite correspondence with the alternating link,and the Jones polynomial of the alternating link is generally calculated by using the disconnection relationship.However,the corresponding calculation amount is large and the calculation process is complicated.The Tutte polynomial of a class of positive-signed graph is calculated by using the definition of the Tutte polynomial.According to the relationship between Tutte polynomials and Jones polynomials of alternating link in the graph,the obtained results can simplify the calculation of Jones polynomials for a class of alternating link with multiple intersections.

关 键 词:Tutte多项式 正符号图 交错链环 

分 类 号:O189.24[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象