考虑虚拟负荷研判的V2G储能充电桩设计研究  

Research on Design of V2G Energy Storage Charging Pile Considering Virtual Load Analysis

在线阅读下载全文

作  者:徐颖 张伟阳 陈豪 XU Ying;ZHANG Weiyang;CHEN Hao(State Grid Changxing Power Supply Company,SMEPC,Shanghai 201913,China)

机构地区:[1]国网上海市电力公司长兴供电公司,上海201913

出  处:《电力与能源》2024年第6期650-654,共5页Power & Energy

摘  要:随着电动汽车入网(V2G)储能充电桩的推广,由散点用户构成的虚拟电厂在弹性负荷管理方面的潜力日益增加。然而,现有技术中针对散点用户的负荷控制策略尚显不足。为此,提出了一种结合充电桩自带储能电池的设计方案。该方案通过运用智能技术,在无外部负荷控制信号的条件下实现了电网需求响应。利用多数据融合与人工智能技术,综合分析本地历年负荷数据、当前频率电压波动率等参数,构建了虚拟本地电网负荷需求预测模型,并通过高速电力线载波通信(HPLC)技术精确控制储能设备的充放电状态。现场试验表明,该系统在各种环境下均能有效管理电网负荷,显著提升了电网稳定性和调节能力,成功实现了V2G的离线智能自动控制,为构建源网荷储一体化的现代智慧电网提供了重要支持。With the promotion of V2G energy storage charging piles,the flexible load potential of scattered users in virtual power plants has been increasing.However,there is limited research on negative control technologies for scattered users in existing systems.This paper proposes a design solution that combines the energy storage bat-tery integrated in the charging pile.Through smart technology,it enables demand response from the grid without requiring external negative control signals.By utilizing multi-data fusion and artificial intelligence technologies,the system analyzes local historical loaddata,current frequency-voltage fluctuations,and otherparameters to construct a virtual local grid load demand prediction model.Furthermore,it uses HPLC(High-Performance Liquid Chro-matography)communication to precisely control the charge and discharge states of the energy storage equipment.Field tests show that the system can effectively manage grid loads under various conditions,significantly improv-ing grid stability and regulation capability.It successfully realizes offline intelligent automatic control of V2G,pro-viding essential support for the construction of an integrated source-network-load-storage modern smart grid.

关 键 词:储能充电桩 V2G 智慧电网 负荷研判 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象