检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics Northeast Forestry University Harbin 150040,Heilongjiang,P.R.China
出 处:《International Journal of Biomathematics》2024年第6期111-139,共29页生物数学学报(英文版)
摘 要:In this paper,we consider a Leslie-Gower type reaction-diffusion predator-prey system with an increasing functional response.We mainly study the effect of three different types of diffusion on the stability of this system.The main results are as follows:(1)in the absence of prey diffusion,diffusion-driven instability can occur;(2)in the absence of predator diffusion,diffusion-driven instability does not occur and the non-constant stationary solution exists and is unstable;(3)in the presence of both prey diffusion and predator diffusion,the system can occur diffusion-driven instability and Turing patterns.At the same time,we also get the existence conditions of the Hopf bifurcation and the Turing-Hopf bifurcation,along with the normal form for the Turing-Hopf bifurcation.In addition,we conduct numerical simulations for all three cases to support the results of our theoretical analysis.
关 键 词:Predator-prey system reaction-diffusion-ordinary differential equations Turing instability Turing-Hopf bifurcation normal form
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222