Investigating the effect of three different types of diffusion on the stability of a Leslie-Gower type predator-prey system  

在线阅读下载全文

作  者:Hongyu Chen Chunrui Zhang 

机构地区:[1]Department of Mathematics Northeast Forestry University Harbin 150040,Heilongjiang,P.R.China

出  处:《International Journal of Biomathematics》2024年第6期111-139,共29页生物数学学报(英文版)

摘  要:In this paper,we consider a Leslie-Gower type reaction-diffusion predator-prey system with an increasing functional response.We mainly study the effect of three different types of diffusion on the stability of this system.The main results are as follows:(1)in the absence of prey diffusion,diffusion-driven instability can occur;(2)in the absence of predator diffusion,diffusion-driven instability does not occur and the non-constant stationary solution exists and is unstable;(3)in the presence of both prey diffusion and predator diffusion,the system can occur diffusion-driven instability and Turing patterns.At the same time,we also get the existence conditions of the Hopf bifurcation and the Turing-Hopf bifurcation,along with the normal form for the Turing-Hopf bifurcation.In addition,we conduct numerical simulations for all three cases to support the results of our theoretical analysis.

关 键 词:Predator-prey system reaction-diffusion-ordinary differential equations Turing instability Turing-Hopf bifurcation normal form 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象