检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chang Liu Shaoyong Guo Fangfang Dang Xuesong Qiu Sujie Shao
机构地区:[1]State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]Network Security Center,State Grid Henan Electric Power Company Information Communication Branch,Zhengzhou 450052,China
出 处:《Big Data Mining and Analytics》2024年第4期1031-1049,共19页大数据挖掘与分析(英文)
基 金:supported by the National Natural Science Foundation of China(No.62322103);the BUPT Excellent PhD Students Foundation(No.CX2022218).
摘 要:The large-scale model(LSM)can handle large-scale data and complex problems,effectively improving the intelligence level of urban intersections.However,the traffic conditions at intersections are becoming increasingly complex,so the intelligent intersection LSMs(I2LSMs)also need to be continuously learned and updated.The traditional cloud-based training method incurs a significant amount of computational and storage overhead,and there is a risk of data leakage.The combination of edge artificial intelligence and federated learning provides an efficient and highly privacy protected computing mode.Therefore,we propose a hierarchical hybrid distributed training mechanism for I2LSM.Firstly,relying on the intelligent intersection system for cloud-network-terminal integration,we constructed an I2LSM hierarchical hybrid distributed training architecture.Then,we propose a hierarchical hybrid federated learning(H2Fed)algorithm that combines the advantages of centralized federated learning and decentralized federated learning.Further,we propose an adaptive compressed sensing algorithm to reduce the communication overhead.Finally,we analyze the convergence of the H2Fed algorithm.Experimental results show that the H2Fed algorithm reduces the communication overhead by 21.6%while ensuring the accuracy of the model.
关 键 词:intelligent intersections large-scale models edge artificial intelligence(AI) federated learning compressed sensing
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.15.52