检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Quan Yan Junwen Duan Jianxin Wang
出 处:《Big Data Mining and Analytics》2024年第4期1187-1198,共12页大数据挖掘与分析(英文)
基 金:supported by the National Key Research and Development Program of China(No.2021YFF1201200);the Science and Technology Major Project of Changsha(No.kh2402004).
摘 要:Automated diagnosis of chest X-rays is pivotal in radiology,aiming to alleviate the workload of radiologists.Traditional methods primarily rely on visual features or label dependence,which is a limitation in detecting nuanced or rare lesions.To address this,we present KEXNet,a pioneering knowledge-enhanced X-ray lesion detection model.KEXNet employs a unique strategy akin to expert radiologists,integrating a knowledge graph based on expert annotations with an interpretable graph learning approach.This novel method combines object detection with a graph neural network,facilitating precise local lesion detection.For global lesion detection,KEXNet synergizes knowledge-enhanced local features with global image features,enhancing diagnostic accuracy.Our evaluations on three benchmark datasets demonstrate that KEXNet outshines existing models,particularly in identifying small or infrequent lesions.Notably,on the Chest ImaGenome dataset,KEXNet’s AUC for local lesion detection surpasses 8.9%compared to the state-of-the-art method AnaXNet,showcasing its potential in revolutionizing automated chest X-ray diagnostics.
关 键 词:multi-label chest X-ray classification object detection knowledge graph learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38