Exploring Trial-and-Error in Deep Learning:Initial Application to Isotope Detection in Mass Spectrometry  

在线阅读下载全文

作  者:Qihong Jiao Yuxiao Wang Yongshuai Wang Shiwei Sun Xuefeng Cui 

机构地区:[1]School of Computer Science and Technology,Shandong University,Qingdao 266237,China [2]Key Lab of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Big Data Mining and Analytics》2024年第4期1251-1261,共11页大数据挖掘与分析(英文)

基  金:supported by the National Natural Science Foundation of China(Nos.62072283 and 62072435).

摘  要:Mass spectrometry plays a crucial role in biomedicine by detecting isotopes,contributing significantly to research,diagnostics,and therapy development.This study introduces IsoFusion,a deep learning model designed to address isotope detection in raw mass spectra.Rather than directly applying convolutional layers to all signal and noise peaks,IsoFusion employs a trial-and-error strategy.First,it investigates all potential charge states(trials)and collects signal peaks around expected m/z values for each trial.Then,convolutional layers extract features from each trial,which are fused to identify the correct one.Finally,the reparameterization trick predicts isotope features based on this correct trial.A key advantage of IsoFusion is shared model parameters across all trials,enhancing feature learning for less common charge states using data from prevalent ones.Our results show a significant accuracy improvement for charge state 5,reaching 99.42%,compared to DeepIso’s 43.36%.Moreover,IsoFusion achieves a 97.33%detection accuracy for isotopes,with 2.4%of detected isotopes previously unidentified by four commonly used methods.

关 键 词:Liquid Chromatography-Mass Spectrometry(LC-MS) isotope detection retention time prediction charge state prediction deep learning 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术] TP311.13

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象