MMAR-Net:A Multi-Stride and Multi-Resolution Affine Registration Network for CT Images  

在线阅读下载全文

作  者:Fu Zhou Fei Luo Ruoshan Kong Yi-Ping Phoebe Chen Feng Liu 

机构地区:[1]School of Computer Science,Wuhan University,Wuhan 430000,China [2]Department of Computer Science and Information Technology,La Trobe University,Melbourne 3083,Australia

出  处:《Big Data Mining and Analytics》2024年第4期1287-1300,共14页大数据挖掘与分析(英文)

基  金:supported by the National Natural Science Foundation of China(No.62172309).

摘  要:The evolution of lung lesions can be assessed by examining multiple CT screenings,which needs to align two CT images accurately.In this study,we propose a multi-stride and multi-resolution affine registration network,called MMAR-net,for 3D affine registration of medical images,which works in an unsupervised way by optimizing the similarity loss.In order to extract more extensive image features,we use a multi-stride module to replace the conventional convolution module.Furthermore,we make use of the image features at multiple scales by dot product between two feature vectors,which could enhance the robustness of image representation.We conduct comprehensive comparison experiments between our model and the existing affine registration methods on two publicly available datasets,DIR-Lab and Learn2Reg,which are both relevant to lung CT image registration.Quantitative and qualitative comparison results demonstrate that our model outperforms existing single-step affine registration networks.Our method improves the key metric of dice similarity coefficient on DIR-Lab and Learn2Reg to 90.57%and 95.51%,respectively.

关 键 词:lung lesion affine registration multi-stride MULTI-RESOLUTION 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象