检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁旭涛 郭亚坤 李静 郭晓宇 LU Xu-tao;GUO Ya-kun;LI Jing;GUO Xiao-yu(College of Mechatronics Engineering,North University of China,Taiyuan 030051,China;College of Electrical and Control Engineering,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学机电工程学院,太原030051 [2]中北大学电气与控制工程学院,太原030051
出 处:《科学技术与工程》2025年第3期1157-1164,共8页Science Technology and Engineering
基 金:山西省重点研发计划(201903D221025)。
摘 要:针对传统CCD(charge coupled device)交汇立靶采集的图像中,枪弹位置提取时采用背景差分法、互相关法所存在通用性差、耗时长的问题。通过对CCD精度靶图像弹丸提取所存在的问题进行深入分析,提出了基于改进灰狼算法的CCD精度靶图像弹丸提取方法。首先,将子弹提取问题转化为在一定约束条件下,寻找灰度值最小连通区域问题。其次,建立了最小化区域灰度值模型、竖直光斑区域及低灰度区域剔除模型。然后,采用基于维度学习的狩猎(dimensional learning-based hunting,DLH)搜索策略的改进灰狼算法,来跳出局部最优解,进而提升求解性能。最后,在参数设定相同的条件下,采用改进的灰狼算法、灰狼算法、飞蛾扑火算法、互相关算法、背景差分法进行了对比试验。实验结果表明,在上述方案下,平均求解时间缩短至12 ms。同时,目标检测成功率达到了95%,相较其他对比算法,性能提升明显。The background difference method and cross-correlation method used in the extraction of the bullet position in the images collected by the traditional CCD(charge coupled device)intersection stand-up target have the problems of poor versatility and long time-consuming.By analyzing the problems existing in CCD precision target image projectile extraction,a method for CCD precision target image projectile extraction based on IGWO(improved grey wolf optimizer)algorithm was proposed.The DLH(dimensional learning-based hunting)search strategy was used to update the position of each search factor through the neighborhood.Generate can-did ate solutions,increase the diversity of search populations,and jump out of local optimal solutions.The bullet extraction problem was transformed into the problem of finding the minimum connected region of gray value under certain constraints.The minimization ar-ea gray value model,the vertical light spot area and the low gray area elimination model were established.Under the same parameter setting,the IGWO,GWO(grey wolf optimizer),MFO(moth-flame optimization)algorithm,cross-correlation algorithm,and back-ground difference method were used to conduct comparative experiments.The experimental results show that the target detection success rate of the IGWO algorithm is much higher than other algorithms,reaching 95%,and the algorithm solution time is much lower than other algorithms,shortening to 12 ms.
关 键 词:IGWO算法 搜索策略 最小化区域灰度值模型 线阵CCD 着靶位置
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.93.1