检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuefeng Xi Chenyang Zhu Yao Duan Renjiao Yi Lintao Zheng Hongjun He Kai Xu
机构地区:[1]College of Computing,National University of Defense Technology,Changsha 410073,China
出 处:《Computational Visual Media》2024年第6期1121-1135,共15页计算可视媒体(英文版)
基 金:supported in part by the National Natural Science Foundation of China(62372457,62002375,62002376);Young Elite Scientists Sponsorship Program by CAST(2023QNRC001);the Natural Science Foundation of Hunan Province of China(2021RC3071).
摘 要:It is challenging to automatically explore an unknown 3D environment with a robot only equipped with depth sensors due to the limited field of view.We introduce THP,a tensor field-based framework for efficient environment exploration which can better utilize the encoded depth information through the geometric characteristics of tensor fields.Specifically,a corresponding tensor field is constructed incrementally and guides the robot to formulate optimal global exploration paths and a collision-free local movement strategy.Degenerate points generated during the exploration are adopted as anchors to formulate a hierarchical TSP for global path optimization.This novel strategy can help the robot avoid long-distance round trips more effectively while maintaining scanning completeness.Furthermore,the tensor field also enables a local movement strategy to avoid collision based on particle advection.As a result,the framework can eliminate massive,time-consuming recalculations of local movement paths.We have experimentally evaluate our method with a ground robot in 8 complex indoor scenes.Our method can on average achieve 14%better exploration efficiency and 21%better exploration completeness than state-of-the-art alternatives using LiDAR scans.Moreover,compared to similar methods,our method makes path decisions 39%faster due to our hierarchical exploration strategy.
关 键 词:tensor field indoor scene exploration path planning trajectory optimization
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127