检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sinuo Deng Lifang Wu Ge Shi Lehao Xing Meng Jian Ye Xiang Ruihai Dong
机构地区:[1]Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China [2]Insight Centre for Data Analytics,University College Dublin,Belfield,Dublin D04 V1W8,Ireland
出 处:《Computational Visual Media》2024年第6期1169-1183,共15页计算可视媒体(英文版)
基 金:supported in part by the National Natural Science Foundation of China under Grant Nos.62106010,61976010,62176011,62236010.
摘 要:Image emotion classification(IEC)aims to extract the abstract emotions evoked in images.Recently,language-supervised methods such as con-trastive language-image pretraining(CLIP)have demonstrated superior performance in image under-standing.However,the underexplored task of IEC presents three major challenges:a tremendous training objective gap between pretraining and IEC,shared suboptimal prompts,and invariant prompts for all instances.In this study,we propose a general framework that effectively exploits the language-supervised CLIP method for the IEC task.First,a prompt-tuning method that mimics the pretraining objective of CLIP is introduced,to exploit the rich image and text semantics associated with CLIP.Subsequently,instance-specific prompts are automatically composed,conditioning them on the categories and image content of instances,diversifying the prompts,and thus avoiding suboptimal problems.Evaluations on six widely used affective datasets show that the proposed method significantly outperforms state-of-the-art methods(up to 9.29%accuracy gain on the EmotionROI dataset)on IEC tasks with only a few trained parameters.The code is publicly available at https://github.com/dsn0w/PT-DPC/for research purposes.
关 键 词:image emotion analysis multimodal learning pretraining model prompt tuning
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198