检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yingjie Xia Xuejiao Liu Yunxiao Zhao Yun Wang
机构地区:[1]Micro-Electronics Research Institute,Hangzhou Dianzi University,Hangzhou 310005,China [2]College of Computer Science and Technology,Zhejiang University,Hangzhou 310012,China [3]angzhou Yuantiao Technology Company,Hangzhou 310036,China [4]School of Information Science and Technology,Hangzhou Normal University,Hangzhou 311121,China [5]School of Cyberspace Security Technology,Hangzhou Dianzi University,Hangzhou 310018,China
出 处:《Journal of Communications and Information Networks》2024年第4期362-373,共12页通信与信息网络学报(英文)
基 金:supported by the National Natural Science Foundation of China under Grant 62472132;Natural Science Foundation of Zhejiang Province under Grant LZ22F030004;Key Research and Development Program Project of Zhejiang Province under Grant 2024C01179.
摘 要:Digital twin(DT)technology is currently pervasive in industrial Internet of things(IoT)applications,notably in predictive maintenance scenarios.Prevailing digital twin-based predictive maintenance methodologies are constrained by a narrow focus on singular physical modeling paradigms,impeding comprehensive analysis of diverse factory data at scale.This paper introduces an improved method,federated continual learning with authentication for distributed digital twin-based industrial IoT(FCLA-DT).This decentralized strategy ensures the continual learning capability vital for adaptive and real-time decision-making in complex industrial predictive maintenance systems.An authentication scheme based on group signature is introduced to enable the verification of digital twin identities during inter-twin collaborations,avoiding unauthorized access and potential model theft.Security analysis shows that FCLA-DT can enable numerous nodes to collaborate learning without compromising individual twin privacy,thereby ensuring group authentication in the cooperative distributed industrial IoT.Performance analysis shows that FCLA-DT outperforms traditional federated learning methods with over 95% fault diagnosis accuracy and ensures the privacy and authentication of digital twins in multi-client task learning.
关 键 词:federated continual learning AUTHENTICATION group signature digital twin industrial Internet of things
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.207.192