检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董绍康 李超 杨光 葛振兴 曹宏业 陈武兵 杨尚东 陈兴国 李文斌 高阳[1] DONG Shao-Kang;LI Chao;YANG Guang;GE Zhen-Xing;CAO Hong-Ye;CHEN Wu-Bing;YANG Shang-Dong;CHEN Xing-Guo;LI Wen-Bin;GAO Yang(State Key Laboratory for Novel Software Technology(Nanjing University),Nanjing 210023,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
机构地区:[1]计算机软件新技术国家重点实验室(南京大学),江苏南京210023 [2]南京邮电大学计算机学院、软件学院、网络空间安全学院,江苏南京210023
出 处:《软件学报》2025年第1期107-151,共45页Journal of Software
基 金:国家自然科学基金(62192783,62106100,62206133,62276142);江苏省自然科学基金(BK20221441);江苏省产业前瞻与关键核心技术竞争项目(BE2021028);深圳市中央引导地方科技发展资金(2021Szvup056);南京大学计算机软件新技术国家重点实验室资助项目(KFKT2022B12)。
摘 要:近年来,随着人工智能技术在序贯决策和博弈对抗等问题的应用方面取得了飞速发展,围棋、游戏、德扑和麻将等领域取得了巨大的进步,例如,AlphaGo、OpenAI Five、AlphaStar、DeepStack、Libratus、Pluribus和Suphx等系统都在这些领域中达到或超过人类专家水平.这些应用集中在双人、两队或者多人的零和博弈问题中,而对于混合博弈问题的研究缺乏实质性的进展与突破.区别于零和博弈,混合博弈需要综合考虑个体收益、集体收益和均衡收益等诸多目标,被广泛应用于公共资源分配、任务调度和自动驾驶等现实场景.因此,对于混合博弈问题的研究至关重要.通过梳理当前混合博弈领域中的重要概念和相关工作,深入分析国内外研究现状和未来发展方向.具体地,首先介绍混合博弈问题的定义与分类;其次详细阐述博弈解概念和求解目标,包含纳什均衡、相关均衡、帕累托最优等解概念,最大化个体收益、最大化集体收益以及兼顾公平等求解目标;接下来根据不同的求解目标,分别对博弈论方法、强化学习方法以及这两种方法的结合进行详细探讨和分析;最后介绍相关的应用场景和实验仿真环境,并对未来研究的方向进行总结与展望.In recent years,there has been rapid advancement in the application of artificial intelligence technology to sequential decisionmaking and adversarial game scenarios,resulting in significant progress in domains such as Go,games,poker,and Mahjong.Notably,systems like AlphaGo,OpenAI Five,AlphaStar,DeepStack,Libratus,Pluribus,and Suphx have achieved or surpassed human expert-level performance in these areas.While these applications primarily focus on zero-sum games involving two players,two teams,or multiple players,there has been limited substantive progress in addressing mixed-motive games.Unlike zero-sum games,mixed-motive games necessitate comprehensive consideration of individual returns,collective returns,and equilibrium.These games are extensively applied in real-world applications such as public resource allocation,task scheduling,and autonomous driving,making research in this area crucial.This study offers a comprehensive overview of key concepts and relevant research in the field of mixed-motive games,providingan indepth analysis of current trends and future directions both domestically and internationally.Specifically,this study first introduces the definition and classification of mixed-motive games.It then elaborates on game solution concepts and objectives,including Nash equilibrium,correlated equilibrium,and Pareto optimality,as well as objectives related to maximizing individual and collective gains,while considering fairness.Furthermore,the study engages in a thorough exploration and analysis of game theory methods,reinforcement learning methods,and their combination based on different solution objectives.In addition,the study discusses relevant application scenarios and experimental simulation environments before concluding with a summary and outlook on future research directions.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145