智慧司法建设下审判主体的异化风险及防范  

The Risk of Trial Subject Alienation and its Prevention under the Construction of Smart Justice

在线阅读下载全文

作  者:杨帆[1] 吕士哲 YANG Fan;LV Shi-zhe(School of Law,South-Central Minzu University,Wuhan 430072,Hubei,China)

机构地区:[1]中南民族大学法学院,湖北武汉430074

出  处:《中南民族大学学报(人文社会科学版)》2025年第1期109-117,185,186,共11页Journal of South-Central Minzu University (Humanities and Social Sciences)

基  金:中南民族大学中央高校基本科研业务费专项基金项目“新时代志愿服务参与应急管理的实现机制研究”(CSQ21012)。

摘  要:人工智能与司法实践相结合是推进智慧司法建设的应有之义,但智慧司法下的人工智能作为类人智能始终不具备人的主体性,亦无法取代法官之主体地位。赋予人工智能以审判主体地位则陷入了法律形式主义的思维定式,机械化地将新一代人工智能系统赋能司法判决更是存在审判主体异化的风险,其法解释力、社会可接受度、社会关系基础皆受到质疑。智慧司法背景下当对人工智能的辅助性地位一以贯之,同时从算法限度、算法可解释性和算法质效监督着手可以适当纾解法律形式主义对裁判的消极影响,并有力防范审判主体异化之风险。The combination of artificial intelligence and judicial practice is an inherent requirement for promoting the construction of smart justice.However,artificial intelligence in the context of smart justice,as a kind of human-like intelligence,never has human subjectivity and cannot replace the dominant position of judges.Endowing artificial intelligence with the status of trial subjects falls into the mindset of legal formalism.Mechanically applying the new-generation artificial intelligence system to empower judicial judgments even poses the risk of the alienation of trial subjects,and its legal interpretative power,social acceptability and social relationship foundation are all questioned.Under the context of smart justice,it should be confirmed and maintained that artificial intelligence holds an auxiliary position.Meanwhile,efforts should be made from aspects such as algorithmic limitations,algorithmic interpretability,and algorithmic quality and efficiency supervision to appropriately alleviate the negative impact of legal formalism on adjudication and effectively prevent the risk of alienation of the trial subject.

关 键 词:人工智能 智慧司法 审判主体 法律形式主义 

分 类 号:D916[政治法律—法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象