New biomimetic approach for multi-objective optimization decision-making of collaborative gear hobbing and grinding  

在线阅读下载全文

作  者:Hengxin NI Jianpeng ZHAO Ximing ZHU Yang YANG Yifan LIU Qing LI 

机构地区:[1]School of Engineering,Anhui Agricultural University,Hefei 230036,China [2]College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China

出  处:《Frontiers of Mechanical Engineering》2024年第6期53-68,共16页机械工程前沿(英文版)

基  金:supported by the Natural Science Research Project of Anhui Educational Committee,China(Grant No.2023AH050999);the Anhui Agricultural University Talent Research Funding Project,China(Grant No.rc412302);the National Natural Science Foundation of China(Grant No.52205079).

摘  要:Multiple process variable parameters such as cutting parameters,tool parameters,and machine tool parameters in gear hobbing and subsequent gear grinding processes directly affect gear machining accuracy and efficiency,as confirmed through historical processing experience or manual decision-making.To determine effective parameters quickly,this study proposes a new biomimetic approach for optimization and decision-making based on the improved multi-objective grasshopper optimization algorithm(MOGOA)and the information entropy technique for order preference by similarity to ideal solution(information entropy-TOPSIS)for gear hobbing and gear grinding collaborative machining.Specifically,the parameter optimization problem under collaborative machining of gear hobbing and gear grinding is presented.Then,a multi-objective model oriented to the optimization of gear accuracy and processing efficiency is constructed through optimization variables,i.e.,hobbing and grinding process parameters.Furthermore,the improved MOGOA and information entropy-TOPSIS are used for optimal decision-making on the process parameter sets.Eventually,the effectiveness and practicality of the proposed multi-objective optimization decision-making method are verified via small module gear precision machining.Results and comparison demonstrate that the optimization and decision of multiple parameters for the collaborative machining of gear hobbing and gear grinding can be solved by the proposed method,whose efficiency and superiority are confirmed.

关 键 词:gear hobbing gear grinding multi-objective grasshopper optimization decision-makin information entropy-TOPSIS 

分 类 号:H164[语言文字—汉语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象