基于优先级先验的演化大规模多目标安全博弈框架  

A Framework for Evolutionary Large-Scale Multi-Objective Security Games Based on Priority Priors

作  者:吴宇鹏 钱鸿 王为业 张杨文辉 周爱民[1,2] Wu Yupeng;Qian Hong;Wang Weiye;Zhang Yangwenhui;Zhou Aimin(School of Computer Science and Technology,East China Normal University,Shanghai 200062;Shanghai Institute of AI for Education,East China Normal University,Shanghai 200062)

机构地区:[1]华东师范大学计算机科学与技术学院,上海200062 [2]华东师范大学上海智能教育研究院,上海200062

出  处:《计算机研究与发展》2025年第2期458-471,共14页Journal of Computer Research and Development

基  金:科技创新2030重大项目(2018AAA0100902);上海市自然科学基金项目(21ZR1420300);国家自然科学基金项目(62106076)。

摘  要:多目标安全博弈(multi-objective security game,MOSG)旨在同时最优化防御者应对多个异质攻击者获得的收益,在实际应用中具有重要意义.近期提出的基于空间离散化的演化搜索(space discretization based evolutionary search,SDES)框架将MOSG中的带约束的高维阶梯函数优化问题转换为低维组合优化问题,并使用贪心策略解决组合优化任务.虽然SDES能够在有限时间内处理大规模MOSG任务,但是SDES难以收敛到大规模MOSG任务对应的最优Pareto前沿上.一方面,SDES的贪心策略的收敛性假设随问题规模扩大而变得愈发难以满足;另一方面,SDES过多的阶段组件(空间离散化、演化优化、评估、解的精炼)存在阶段耦合的风险,即上游组件的优化质量直接影响下游组件的表现.因此,挖掘并利用MOSG任务中被保护对象的优先级(priority)先验知识,旨在提高解的质量并简化SDES框架,从而提出了SDES-P框架.SDES-P重新设计了SDES的核心组件——评估组件,并移除解的精炼组件.具体而言,SDES-P从具有最大资源的不可行解开始,根据被保护对象优先级先验将被保护对象分成2组,优先级较高的一组对象会逐渐释放资源以找到可行解.最后,SDES-P包含了一种结合优先级先验的演化局部搜索策略,增强最终Pareto前沿的质量.分析出SDES-P可保持SDES所具有的样本复杂度低、规模可扩展性强的优势,并且用实验结果表明,无论MOSG任务是否满足收敛假设,SDES-P可以找到相较于SDES收敛性、多样性更优的高质量Pareto前沿.Multi-objective security games(MOSGs)aim to simultaneously optimize the defender’s payoff against multiple heterogeneous attackers,which is of great importance in practical applications.Recently,the space discretization based evolutionary search(SDES)framework has been proposed to transform the constrained highdimensional step function optimization problem in MOSG into a low-dimensional combinatorial optimization problem and to solve the combinatorial optimization task using a greedy strategy.Although SDES can address large-scale MOSG tasks in time,it is difficult for SDES to converge to the optimal Pareto front,especially in the large-scale scenario.On the one hand,the convergence assumption of the greedy strategy of SDES becomes difficult to be satisfied with the scale of MOSG tasks.On the other hand,SDES uses multiple number of stage components,including spatial discretization,evolutionary optimization,evaluation,and refinement components.This poses a risk of stage coupling,where upstream components’optimization quality directly affects downstream components’performance.To address these issues,we exploit and utilize the priority prior of the protected targets in MOSG task to improve the quality of solutions and simplify the SDES framework,resulting in the SDES-P framework.SDES-P redesigns the evaluation component,which is the core component of SDES,and removes the refinement component.Specifically,SDES-P starts from the infeasible solution with the maximum resources.Then,SDES-P divides the protected targets into two groups based on the priority prior,and the higher-priority group gradually releases resources to find feasible solutions.Finally,SDES-P contains an evolutionary local search strategy combined with priority prior knowledge to enhance the quality of the final Pareto front.We reveal that SDES-P can maintain the advantages of low sample complexity and strong scalability of SDES,and the experimental results show that regardless of whether the convergence assumption is satisfied,SDES-P can find hig

关 键 词:大规模演化安全博弈 STACKELBERG博弈 多目标演化优化 优先级先验 局部搜索 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象