Robustifying and simplifying high-dimensional regression with applications to yearly stock return and telematics data  

在线阅读下载全文

作  者:Malvina Marchese Maria Dolores Martinez-Miranda Jens Perch Nielsen Michael Scholz 

机构地区:[1]Bayes(formerly Cass)Business School,City,University of London,106 Bunhill Row,London EC1Y 8TZ,UK [2]Department of Statistics and Operations Research,University of Granada,Campus Fuentenueva,18071Granada,Spain [3]Department of Economics,University of Klagenfurt,UniversitatsstraBe 65-67,9020 Klagenfurt,Austria [4]JOANNEUM RESEARCH Forschungsgesellschaft mbH,LeonhardstraBe 59,8010 Graz,Austria

出  处:《Financial Innovation》2024年第1期246-261,共16页金融创新(英文)

基  金:financial support from Ministerio de Ciencia,Innovacion y Universidades(PID2020-116587GB-I00);financial support from Austrian National Bank(Jubilaumsfondsprojekt 18901)。

摘  要:The availability of many variables with predictive power makes their selection in a regression context difficult.This study considers robust and understandable low-dimensional estimators as building blocks to improve overall predictive power by optimally combining these building blocks.Our new algorithm is based on generalized cross-validation and builds a predictive model step-by-step from a simple mean to more complex predictive combinations.Empirical applications to annual fnancial returns and actuarial telematics data show its usefulness in the financial and insurance industries.

关 键 词:Forecasting Non-linear prediction Stock returns Dimension reduction TELEMATICS 

分 类 号:U46[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象