检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Supply Chain and Information Management,The Hang Seng University of Hong Kong,HKSAR,China [2]Proton Therapy Pte Ltd,1 Biopolis Drive,Biopolis,Singapore
出 处:《Financial Innovation》2024年第1期499-523,共25页金融创新(英文)
摘 要:Modeling implied volatility(IV)is important for option pricing,hedging,and risk management.Previous studies of deterministic implied volatility functions(DIVFs)propose two parameters,moneyness and time to maturity,to estimate implied volatility.Recent DIVF models have included factors such as a moving average ratio and relative bid-ask spread but fail to enhance modeling accuracy.The current study offers a generalized DIVF model by including a momentum indicator for the underlying asset using a relative strength index(RSI)covering multiple time resolutions as a factor,as momentum is often used by investors and speculators in their trading decisions,and in contrast to volatility,RSI can distinguish between bull and bear markets.To the best of our knowledge,prior studies have not included RSI as a predictive factor in modeling IV.Instead of using a simple linear regression as in previous studies,we use a machine learning regression algorithm,namely random forest,to model a nonlinear IV.Previous studies apply DVIF modeling to options on traditional financial assets,such as stock and foreign exchange markets.Here,we study options on the largest cryptocurrency,Bitcoin,which poses greater modeling challenges due to its extreme volatility and the fact that it is not as well studied as traditional financial assets.Recent Bitcoin option chain data were collected from a leading cryptocurrency option exchange over a four-month period for model development and validation.Our dataset includes short-maturity options with expiry in less than six days,as well as a full range of moneyness,both of which are often excluded in existing studies as prices for options with these characteristics are often highly volatile and pose challenges to model building.Our in-sample and out-sample results indicate that including our proposed momentum indicator significantly enhances the model’s accuracy in pricing options.The nonlinear machine learning random forest algorithm also performed better than a simple linear regression.Compared to prev
关 键 词:Implied volatility Cryptocurrency options Momentum indicator Relative strength index Machine learning Random Forest regression Black-Scholes-Merton equation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.186.244