检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Htet Htet Htun Michael Biehl Nicolai Petkov
出 处:《Financial Innovation》2024年第1期1496-1511,共16页金融创新(英文)
基 金:funded by The University of Groningen and Prospect Burma organization.
摘 要:Forecasting changes in stock prices is extremely challenging given that numerous factors cause these prices to fluctuate.The random walk hypothesis and efficient market hypothesis essentially state that it is not possible to systematically,reliably predict future stock prices or forecast changes in the stock market overall.Nonetheless,machine learning(ML)techniques that use historical data have been applied to make such predictions.Previous studies focused on a small number of stocks and claimed success with limited statistical confidence.In this study,we construct feature vectors composed of multiple previous relative returns and apply the random forest(RF),support vector machine(SVM),and long short-term memory(LSTM)ML methods as classifiers to predict whether a stock can return 2% more than its index in the following 10 days.We apply this approach to all S&P 500 companies for the period 2017-2022.We assess performance using accuracy,precision,and recall and compare our results with a random choice strategy.We observe that the LSTM classifier outperforms RF and SVM,and the data-driven ML methods outperform the random choice classifier(p=8.46e^(-17) for accuracy of LSTM).Thus,we demonstrate that the probability that the random walk and efficient market hypotheses hold in the considered context is negligibly small.
关 键 词:Stock returns prediction Relative returns CLASSIFICATION Random forest Support vector machine Long short-term memory Machine learning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.137.245