宽谱红外/太赫兹量子棘轮探测器研究进展(内封面文章·特邀)  

Research progress on broad-spectrum infrared/terahertz quantum ratchet detectors(inner cover paper·invited)

在线阅读下载全文

作  者:楚卫东[1,2] 白鹏 杨宁 王屹[3] 韩尚杰 王迎新 赵自然 CHU Weidong;BAI Peng;YANG Ning;WANG Yi;HAN Shangjie;WANG Yingxin;ZHAO Ziran(Institute of Applied Physics and Computational Mathematics,Beijing 100088,China;National Key Laboratory of Computational Physics,Beijing 100088,China;School of Physics and Astronomy,Beijing Normal University,Beijing 100875,China;School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;Department of Engineering Physics,Tsinghua University,Beijing 100084,China)

机构地区:[1]北京应用物理与计算数学研究所,北京100088 [2]计算物理全国重点实验室,北京100088 [3]北京师范大学物理与天文学院,北京100875 [4]北京邮电大学理学院,北京102206 [5]清华大学工程物理系,北京100084

出  处:《红外与激光工程》2025年第1期12-25,共14页Infrared and Laser Engineering

基  金:国家自然科学基金项目(62475019,12104061,62327804);国家重点研发计划项目(2023YFF0715000)。

摘  要:近年来,红外/太赫兹探测技术取得了卓越的进步,聚焦于当前主流的红外及太赫兹探测器就其优点和缺点进行相应评述。为满足现在科技水平所需的高速探测光子型红外/太赫兹探测器取得了广泛地关注和研究,但其工作温度低、响应光谱范围窄等缺点限制了其应用的场景。就工作原理、工作模式、研究进展、能带工程等方面介绍GaAs基经典红外/太赫兹光子型探测器并进行评述。在此基础上,详细介绍文中提出的量子棘轮红外探测器(QRIP)的研究进展,从QRIP器件的工作原理、器件结构等方面阐述了其优势及可行性。通过研究QRIP不同的杂质类型、掺杂浓度、生长工艺、能带结构等条件以研究其工作机理及量子特性,列出了不同结构QRIP器件实验结果并进行了分析。棘轮结构在无外加电场下能够对红外能量进行探测,同时在特定的偏压下能够实现光谱可调的性质以实现宽谱的探测。进一步地,将QRIP集成LED制备出量子棘轮上转换器件,其能够实现4~200 THz的超宽谱探测,同时量子棘轮上转换探测器在25 K时响应率可以达到0.4 A/W。该研究表明了量子棘轮探测器能够有效提升器件的工作温度、响应光谱范围,为高工作温度红外/太赫兹光子型探测器实现提供了新思路。In recent years,infrared/terahertz detection technology has made remarkable progress.This review article will focus on the current infrared and terahertz detectors and make corresponding comments on their advantages and disadvantages.To meet the needs of the current level of technology,photon-type infrared/terahertz detectors required for high-speed detection have received extensive attention and research,but their disadvantages such as low operating temperature and narrow response spectral range limit the application scenarios.This article will mainly introduce and comment on the GaAs-based classical infrared/terahertz photontype detectors based on aspects such as working principle,working mode,research progress,and band gap engineering.On this basis,the research progress of the quantum ratchet photodetector(QRPD)proposed by our research group is introduced in detail,and its advantages and feasibility are explained from the working principle to device structure of the QRPD device.By studying the working mechanism and quantum characteristics of QRPD under different impurity types,doping concentrations,growth processes,and band gap structures,the experimental results of different structural QRPD devices are listed and analyzed in this article.Significance The ratchet structure can detect infrared radiation without an external electric field,and can achieve the property of spectrally tunable under a specific bias to achieve broadband detection.Further,the QRPD is integrated with the LED to prepare a quantum ratchet upconversion device,which can achieve ultra-broadband detection in the range of 4-200 THz,and the responsivity of the quantum ratchet upconversion detector can reach 0.4 A/W at 25 K.This study shows that the quantum ratchet detector can effectively increase the operating temperature and response spectral range of the device,and provides a new idea for high-temperature infrared/terahertz photon-type detectors.Progress First,we introduced the advantages and disadvantages of the existing traditional infrare

关 键 词:红外/太赫兹探测器 宽谱探测器 高温太赫兹探测 量子棘轮 

分 类 号:TN215[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象