机构地区:[1]西南财经大学国际商学院
出 处:《数量经济技术经济研究》2025年第1期51-71,共21页Journal of Quantitative & Technological Economics
基 金:教育部人文社会科学研究规划青年基金项目(24YJC790078);西南财经大学研究生代表性成果培育项目(JGS2024007,JGS2024054);西南财经大学光华英才工程的资助。
摘 要:数字经济和实体经济深度融合为推动实体经济发展的效率变革提供了新动能。本文从数字化供应链视角探索了数字科技企业赋能实体经济发展效率变革的理论机制。基于中国工商注册企业数据库披露的多维企业信息,本文采用自然语言处理和机器学习等方法识别了数字科技企业,构建数字接近度变量以刻画数字科技企业与实体企业之间的经济联系,结合中国税收调查数据库,构建计量模型实证检验了数字科技企业赋能中国制造业企业全要素生产率提升的影响及其机制。本文研究发现,数字接近度提升显著促进了中国制造业企业全要素生产率提升。从供应链视角来看,数字接近度的提升不仅形成了企业对中间品供应商的搜索优化效应,显著降低了企业中间品投入成本,而且能够产生数字营销效应,扩张企业需求市场规模,最终共同驱动制造业企业全要素生产率提升。从溢出效应来看,数字科技企业对制造业企业的赋能效应能够通过供应链实现溢出影响,通过中间品溢出效应和需求溢出效应显著提升供应商以及客户的产出与生产率水平。In recent years,the adoption of digital supply chain technologies and solutions offered by digital technology enterprises(DTEs)has enabled manufacturing firms to achieve significant efficiency gains.Through these digital advancements,manufacturing enterprises have seamlessly integrated information,performed real-time data analytics,and enhanced communication within their supply chains.These improvements have reduced“two-way”transaction costs along both upstream and downstream segments of the supply chain,optimizing production processes and marketing activities.Moreover,DTEs have empowered manufacturers to refine their digital marketing strategies,thereby improving returns on marketing investments.In the domain of customer relationship management,the intelligent systems and digital marketing tools provided by these technology firms have facilitated a deeper understanding of market demands and consumer preferences.This,in turn,enables manufacturers to develop targeted marketing strategies,introduce personalized products and services,and enhance their competitive edge,leading to an expanded market reach.This study explores the mechanisms by which DTEs contribute to the transformation and efficiency improvements of the real economy,specifically through the lens of digital supply chains.Utilizing data from China's industrial and commercial registration database,combined with advanced natural language processing and machine learning techniques,we identified the spatial distribution of DTEs.Based on this,we constructed a“digital proximity”variable to capture the intensity of economic linkages between DTEs and traditional manufacturing firms.We then integrated this digital proximity measure with microlevel data from the 2007~2016 China Tax Survey database to develop an econometric model,which was used to empirically analyze the impact of DTEs on the total factor productivity(TFP)of Chinese manufacturing firms and to investigate the channels through which these effects materialize.Our findings indicate that an inc
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...