检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林嘉豪 户雪敏 段维彤 杨俊杰 黄朝炎 黄卫利 李宇翔 胡小平[1] LIN Jiahao;HU Xuemin;DUAN Weitong;YANG Junjie;HUANG Chaoyan;HUANG Weili;LI Yuxiang;HU Xiaoping(Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education,Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau,Ministry of Agriculture and Rural Affairs,College of Plant Protection,Northwest A&F University,Yangling 712100,China;Hubei Plant Protection Station,Wuhan 430070,China;Xiangyang Plant Protection Station,Hubei Province,Xiangyang 441021,China;Xi’an Huang’s Biological Engineering Co.,Ltd.,Xi’an 710065,China)
机构地区:[1]西北农林科技大学植物保护学院,植保资源与病虫害治理教育部重点实验室,农业农村部西北黄土高原作物有害生物综合治理重点实验室,杨凌712100 [2]湖北省植物保护总站,武汉430070 [3]湖北省襄阳市植物保护站,襄阳441021 [4]西安黄氏生物工程有限公司,西安710065
出 处:《植物保护》2025年第1期161-168,共8页Plant Protection
基 金:国家重点研发计划(2021YFD1401000);科技部国际合作项目(G2023172013L);西北农林科技大学推广项目(TGZX2021-13);西北农林科技大学高水平创新团队项目(XYTD2023-04)。
摘 要:湖北省是我国小麦条锈菌的重要冬繁区之一,也是小麦条锈病由西北越夏区传播至华中小麦主产区的关键通道,加强对湖北省小麦条锈病的准确预测和科学防控至关重要。本研究利用1995年-2023年的数据,通过相关性分析,结合滑动窗口法筛选出了与湖北省小麦条锈病发生面积相关的因子,包括日平均气温、日平均最高气温、日平均最低气温、平均日照时数、日累积降水量,并以1995年-2020年的数据构建了条锈病发生面积的基于全子集回归模型和BP神经网络模型。结果表明,全子集回归模型1和2对1995年-2020年小麦条锈病发生面积回测准确度分别为88.7%和88.1%,对2021年-2023年的预测准确度分别为89.8%和95.2%;BP神经网络模型1和2对1995年-2020年小麦条锈病发生面积回测准确度分别为96.5%和95.8%,对2021年-2023年的预测准确度分别为91.6%和90.9%。因此,BP神经网络模型1是湖北省小麦条锈病发生面积的最佳模型。Hubei province is a crucial winter propagation area for wheat stripe rust pathogen in China and serves as a key transmission route for the disease from the northwestern over-summering regions to the main wheat-producing areas in central China.Accurately predicting and scientifically controlling wheat stripe rust in Hubei province is very important.This study utilized data from 1995 to 2023,employing correlation analysis and the sliding window method to identify factors related to the occurrence area of wheat stripe rust in the region,including daily average temperature,daily average maximum temperature,daily average minimum temperature,average sunshine hours,and daily cumulative precipitation.Prediction models for the occurrence area of wheat stripe rust from 1995 to 2020 were constructed using full subset regression and BP neural network algorithm.The backtesting accuracies for the full subset regression models 1 and 2 were 88.7%and 88.1%,respectively,while the prediction accuracies from 2021 to 2023 were 89.8%and 95.2%,respectively.For the BP neural network models 1 and 2,the backtesting accuracies from 1995 to 2020 were 96.5%and 95.8%,respectively,and the prediction accuracies from 2021 to 2023 were 91.6%and 90.9%,respectively.Therefore,BP neural network model 1 is the best model for predicting the occurrence area of wheat stripe rust in Hubei province.
关 键 词:小麦条锈病 发生面积 全子集回归 BP神经网络算法
分 类 号:S435.121[农业科学—农业昆虫与害虫防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171