基于工业计算机网络的高阻抗电弧炉控制系统研究  

Research on High Impedance Electric Arc Furnace Control System Based on Industrial Computer Network

在线阅读下载全文

作  者:高杨[1] GAO Yang(Shaanxi College of National Defense Industry,Xi'an 710300,China)

机构地区:[1]陕西国防工业职业技术学院,陕西西安710300

出  处:《工业加热》2025年第1期32-35,共4页Industrial Heating

摘  要:随着时代的不断进步,计算机网络在各个领域迎来了飞速的发展,特别是在自动化领域,其广泛应用成为时代潮流。计算机网络在电弧炉控制中的应用为工业生产带来了巨大的经济和技术价值。未来计算机网络技术发展,工业电弧炉控制系统将进一步优化,推动工业领域朝着更智能、更高效的方向发展。在工业电弧炉控制领域,引入计算机网络已经成为不可避免的趋势。先对高阻抗电弧炉炼钢特点以及工艺流程进行介绍,结合计算机网络通信设计了先进的高阻抗电弧炉控制系统,并对RBF算法进行分析,旨在推动该领域的技术创新与发展,希望能够显著提高电弧炉的运行效率,降低电力消耗,实现对电弧的精确控制。为工业电弧炉的控制提供了更为可靠和高效的解决方案。With the continuous progress of the times,computer networks have ushered in rapid development in various fields,especially in the field of automation,and its wide application has become the trend of the times.The application of computer networks in electric arc furnace control has brought great economic and technical value to industrial production.The future development of computer network technology,in-dustrial arc furnace control system will be further optimized to promote the industrial field towards a more intelligent and efficient direction.In the field of industrial electric arc furnace control,the introduction of computer networks has become an inevitable trend.The characteristics of high impedance electric arc furnace steelmaking and the process is introduced,combines the computer network communication to design an ad-vanced high impedance electric arc furnace control system,and analyzes the RBF algorithm,which aims to promote the technological innova-tion and development of this field,hoping to significantly improve the operating efficiency of the electric arc furnace,reduce power consump-tion,and realize the precise control of the point arc.It provides a more reliable and efficient solution for the control of industrial electric arc furnace.

关 键 词:计算机网络 高阻抗电弧炉 RBF算法 控制系统 

分 类 号:TF806.7[冶金工程—有色金属冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象