基于WPD-CNN的补偿电容故障诊断方法研究  被引量:1

Research on Compensation Capacitor Fault Diagnosis Method Based on WPD-CNN

在线阅读下载全文

作  者:罗泽霖 孟景辉 刘金朝 罗依梦 许庆阳 解婉茹 LUO Zelin;MENG Jinghui;LIU Jinzhao;LUO Yimeng;XU Qingyang;XIE Wanru(Infrastructure Inspection Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China)

机构地区:[1]中国铁道科学研究院集团有限公司基础设施检测研究所,北京100081

出  处:《铁道标准设计》2025年第1期191-197,共7页Railway Standard Design

基  金:中国铁道科学研究院集团有限公司基础设施检测研究所基金项目(2021JJXM25)。

摘  要:为进一步挖掘动态检测数据中蕴含的补偿电容状态特征,针对ZPW-2000A型轨道电路,结合小波包分解与卷积神经网络,提出一种基于WPD-CNN的补偿电容故障诊断方法。采用功率谱分析的方法,找出检测曲线中趋势项特征与补偿电容特征所在频带范围,然后利用小波包分解方法对原始信号进行分解,提取其中特征频带内的小波包系数构造补偿电容特征矩阵。使用动态检测数据构造训练集与测试集,将不同故障类型的特征矩阵输入卷积神经网络进行训练学习,并在测试集上进行验证。实验结果表明,WPD-CNN方法对单个信号的特征提取用时5.9 ms,总体故障识别准确率为98.4%,可有效识别不同位置的补偿电容故障问题,为补偿电容故障诊断提供依据。In order to further mine the characteristics of compensating capacitance contained in dynamic detection data,a fault diagnosis method of compensating capacitor based on WPD-CNN is proposed for ZPW-2000A track circuit,combined with wavelet packet decomposition and convolution neural network.The frequency band range of trend term and compensation capacitance in the detection curve is found out by using the method of power spectrum analysis.Then the original signal is decomposed by wavelet packet decomposition method,and the wavelet packet coefficients in the characteristic frequency band are extracted to construct the compensation capacitance characteristic matrix.The training set and test set are constructed by using dynamic detection data,and the characteristic matrices of different fault types are input into the convolution neural network for training and learning,and verified on the test set.The experimental results show that the WPD-CNN method extracts the features of a single signal with only 5.9ms,and the overall fault identification accuracy is 98.4%.It can effectively identify the faults of compensation capacitors in different positions and provide a basis for fault diagnosis of compensation capacitors.

关 键 词:轨道电路 补偿电容 动态检测 小波包分解 卷积神经网络 故障诊断 

分 类 号:U284[交通运输工程—交通信息工程及控制]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象