检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周雷[1] 苏馨 张崎[2] 黄一[2] ZHOU Lei;SU Xin;ZHANG Qi;HUANG Yi(Offshore Oil Engineering Co.,Ltd.,Tianjin 300451,China;School of Naval Architecture and Ocean Engineering,Dalian University of Technology,Dalian 116086,Liaoning China)
机构地区:[1]海洋石油工程股份有限公司,天津300451 [2]大连理工大学船舶工程学院,辽宁大连116086
出 处:《海洋工程装备与技术》2024年第4期1-7,共7页Ocean Engineering Equipment and Technology
基 金:海洋工程数字孪生机理种子库及导管架结构、浮式设施数字孪生技术(Z2023SYENT1390)。
摘 要:随着环境监测技术的发展,准确识别数据中的异常值成为一个重要挑战。本研究提出了一种结合长短时记忆网络(LSTM)和随机森林模型的方法,用于预测和重构环境特征数据,进而实现对异常值的有效监测。首先,使用LSTM模型对环境特征如风速、风向等进行时间序列预测,然后以这些预测结果作为输入,应用随机森林模型对轴力进行预测。研究表明,通过对特征的重构,相较于直接的异常值监测方法,可以显著提高轴力预测的准确性。重构特征后数据的R^(2)值、MAE(平均绝对误差)和RMSE(均方根误差)均优于原始特征数据。特别是R^(2)值,由0.921提升至0.956,证明了模型在数据拟合上的显著提升。With the advancement of environmental monitoring technologies,accurately identifying anomalies in data has become a crucial challenge.This study introduces a method combining Long Short-Term Memory(LSTM)networks and Random Forest models for predicting and reconstructing environmental feature data,thereby enabling effective anomaly monitoring.Initially,the LSTM model is used to forecast time series data for environmental features such as wind speed and direction.Subsequently,these forecasts are used as inputs to apply a Random Forest model for predicting axial force.The research indicates that by reconstructing features,the accuracy of axial force predictions can be significantly enhanced compared to direct anomaly detection methods.The R^(2)values,Mean Absolute Error(MAE),and Root Mean Squared Error(RMSE)for data with reconstructed features surpass those for data with original features.Particularly,the improvement from an R^(2)value of 0.921 to 0.956 underscores a significant enhancement in the models data fitting capability.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222