检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谷瑞 顾家乐[2] 宋翠玲 钱春花 Gu Rui;Gu Jiale;Song Cuiling;Qian Chunhua(Nanjing University,Nanjing,210008,China;Suzhou Industrial Park Institute of Services Outsourcing,Suzhou,215123,China;Jiangsu Academy of Agricultural Sciences,Nanjing,210014,China)
机构地区:[1]南京大学,南京市210008 [2]苏州工业园区服务外包职业学院,江苏苏州215123 [3]江苏省农业科学院,南京市210014
出 处:《中国农机化学报》2025年第2期173-180,186,共9页Journal of Chinese Agricultural Mechanization
基 金:江苏省高职院校教师专业带头人高端研修项目(2023TDFX010);江苏现代农业产业技术体系项目(JATS—2023—348);苏州市科技计划项目(SNG2023005)。
摘 要:为解决传统神经网络参数量大、无法满足资源有限的移动设备对苹果叶片病害的识别需求,提出一种基于坐标注意力的多尺度轻量级模型CA—MobileNetV2。首先,将MobileNetV2倒残差中3×3的卷积替换成多尺度特征融合模块(MMF—module),在不增加参数量的前提下,引入空洞卷积增大感受野,以捕捉丰富的多尺度细节信息,增强网络对细节信息和语义信息提取能力;其次,引入坐标注意力机制自适应地学习不同位置的特征权重,增强对苹果叶片病害区域的感知能力;最后,针对模型训练中的梯度消失问题,改进MobileNetV2的分类器,并引入Leaky ReLU激活函数。结果表明,所提轻量级模型在验证集上的识别准确率、参数量、浮点运算量分别为98.36%,2.35 MB和298.70 M,与ShuffleNetV2、EfficientNet—B2、MobileNetV2、MobileNetV3和GhostNet相比,参数量压缩0.69 MB、6.41 MB、0.28 MB、4.32 MB、1.46 MB,准确率提升8.6%,6.47%,5.07%,4.28%和3.85%,推理时间减少8.7 ms、21.1 ms、13 ms、6.9 ms、17.6 ms。In order to solve the problem that traditional neural networks cannot meet the recognition needs of mobile devices with limited resources for apple leaf diseases due to the large number of parameters,a multi-scale lightweight network model CA—MobileNetV2 based on coordinate attention was proposed.Firstly,the 3×3 convolution in the MobileNetV2 reciprocal residual is replaced with a multi-scale feature fusion module(MMF—module).Without increasing the number of parameters,empty convolution is introduced to increase the sensitivity field,so as to capture rich multi-scale details and enhance the ability of the network to extract details and semantic information.Secondly,coordinate attention mechanism is introduced to learn the feature weights of different positions adaptively to enhance the perception ability of apple leaf disease region.Finally,to solve the problem of gradient disappearance in model training,the MobileNetV2 classifier is improved and the Leaky ReLU activation function is introduced.The experiment result shows that the recognition accuracy,parameters,and FLOPs of the lightweight model proposed in this article on the apple leaf disease dataset are 98.36%,2.35 MB,and 298.70 M respectively.Compared with ShuffleNetV2,EfficientNet—B2,MobileNetV2,MobileNetV3,and GhostNet,the parameter count has been compressed by 0.69 MB,6.41 MB,0.28 MB,4.32 MB,and 1.46 MB,and the accuracy has been improved by 8.6%,6.47%,5.07%,4.28%,and 3.85%,while the inference time has been reduced by 8.7 ms,21.1 ms,13 ms,6.9 ms,and 17.6 ms.
关 键 词:苹果叶片 病害识别 坐标注意力 轻量级模型 多尺度特征融合
分 类 号:S436.611[农业科学—农业昆虫与害虫防治] TP183[农业科学—植物保护] TP391.41[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.210.133