检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴敏[1] 孙文靖 缪宏[1] Dai Min;Sun Wenjing;Miao Hong(College of Mechanical Engineering,Yangzhou University,Yangzhou,225127,China)
出 处:《中国农机化学报》2025年第2期224-229,252,共7页Journal of Chinese Agricultural Mechanization
基 金:江苏省科技项目——现代农业重点及面上项目(BE2023330);江苏省农业科技自主创新资金项目(CX(22)3117)。
摘 要:针对GoogLeNet模型在自然环境下进行辣椒叶片病虫害识别时存在网络参数多、模型内存大以及训练时间长的问题,提出一种融合CBAM机制的轻量化GoogLeNet模型(CBAM—GoogLeNet)。采用CBAM注意力机制替换Inception(4b)和Inception(4c)模块,将该注意力机制插入到平均池化层之后,在全连接层中添加L2正则化,达到减小训练模型和缩短训练时长的目的,同时保证网络模型的高准确率和验证率,并结合MATLAB平台设计一款可视化的辣椒病虫害识别系统。结果表明,CBAM—GoogLeNet的模型大小相比AlexNet、VGG16、VGG19和GoogLeNet分别缩小91.2%、96.2%、96.3%和15.0%,训练时长分别减少12.7%、26.5%、62.2%和8.8%,此外,该模型的识别准确率达到99.5%,验证准确率达到97.3%,实现模型轻量化和快速精准识别的目标。为辣椒及时防治、减少损失提供一种有效的技术支持。In order to address the issues of numerous network parameters,large model memory and long training time in recognizing diseases and pests on pepper leaves in natural environments by using the GoogLeNet model,a lightweight GoogLeNet model incorporating the CBAM mechanism(CBAM—GoogLeNet)is proposed.In this model,Inception(4b)and Inception(4c)modules are replaced by the CBAM attention mechanism,while this attention mechanism is inserted into the average pooling layer,and L2 regularization is added in the fully connected layer,so as to reduce the model size and shorten the training time,while ensuring high accuracy and validation rates of the network model.A visual pepper disease and pest identification system is also designed by using the MATLAB platform.The results show that the size of the CBAM—GoogLeNet model is reduced by 91.2%,96.2%,96.3%,and 15.0%compared to AlexNet,VGG16,VGG19,and GoogLeNet,respectively.The training time is reduced by 12.7%,26.5%,62.2%,and 8.8%,respectively.Additionally,the model achieves an identification accuracy of 99.5%and a validation accuracy of 97.3%,realizing the goals of model lightweighting and fast,accurate recognition.This provides effective technical support for timely prevention and control of pepper diseases and pests,and the reduction of losses.
关 键 词:辣椒病虫害 精准识别 轻量化模型 注意力机制 深度学习
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] S435.79[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239