A manoeuvre indicator and ensemble learning-based risky driver recognition approach for highway merging areas  

在线阅读下载全文

作  者:Xingliang Liu Shuang Deng Tangzhi Liu Tong Liu Song Wang 

机构地区:[1]Chongqing Key Laboratory of Intelligent Integrated and Multidimensional Transportation System,Chongqing Jiaotong University,Chongqing 400074,China

出  处:《Transportation Safety and Environment》2024年第4期156-166,共11页交通安全与环境(英文)

基  金:funded by National Key R&D Program of China(Grant No.2023YFC3009501);the National Nature Science Foundation of China(Grant No.52172341);the Natural Science Foundation of Chongqing,China(Grant No.CSTB2022NSCQ-MSX0519);the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200712);Chongqing Natural Science Foundation Project(Grant No:CSTB2023NSCQ-LZX0126).

摘  要:Due to the complex traffic characteristics in highway merging areas,drivers tend to exhibit high-risk driving behaviours.To address the characteristics of driving behaviour in highway merging areas,we have developed a real-time identification model for risky drivers by combining a driver risk level labelling method with load balancing-ensemble learning(LB-EL).In this paper,we explore four types of manoeuvre indicator indexes(MIIs)—acute direction,stomp pedal,dangerous following and dangerous lane changing—that can describe the negative behaviours of both individual vehicles and vehicle platoons in highway merging areas.To quantize the label driver risk level,we use the interquartile range(IQR)method and Criteria Importance Though Intercriteria Correlation(CRITIC)while evaluating the reliability of the MII using spatial analysis.Furthermore,we balance the dataset using three load balancing(LB)algorithms and create nine ensemble strategies by pairing adaptive boosting(AdaBoost),extreme gradient boosting(XGBoost)and light gradient boosting machine(LGBM)with the three LB algorithms.Finally,we validate the proposed model using trajectory data extracted from unmanned aerial vehicle(UAV)videos.The results indicate that the distribution laws of risky driving behaviours in the acute direction and stomp pedal show a high degree of similarity and good matching with the distribution laws of traffic conflict points in existing research.Moreover,the synthetic minority over-sampling technique-light gradient boosting machine(SMOTE-LGBM)ensemble model achieves the best performance,reaching an accuracy rate of 93.4%,and a recall rate of 92.1%,which demonstrates the validity of our proposed model.This model can be widely applied to recognize risky drivers in video-based surveillance systems.

关 键 词:traffic safety highway merging area risky driving manoeuvre indicator ensemble learning 

分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象