基于专利数据的公平机器学习技术发展与我国研发对策研究  

Research on the Development of Fair Machine Learning Technology Based on Patent Data and R&D Strategies in China

在线阅读下载全文

作  者:杏运 徐滢 吕幼新 XING Yun;XU Ying;LÜYouxin(Patent Examination Cooperation Sichuan Center of the Patent Office,CNIPA,Chengdu 610213;School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731)

机构地区:[1]国家知识产权局专利局专利审查协作四川中心,成都610213 [2]电子科技大学信息与通信工程学院,成都611731

出  处:《中国发明与专利》2025年第2期75-84,共10页China Invention & Patent

摘  要:[目的/意义]随着人工智能技术在日常生活中的广泛应用,人类越来越多地需要借助该技术做出各种决策,然而由于机器学习中的不公平问题,人工智能常常产生带有偏见性的决策,这类决策会导致特定群体受到歧视,因此确保机器学习技术的公平性显得异常重要。[方法/过程]本文首先列举了存在偏见的机器学习技术导致的不公平现象,然后针对公平机器学习技术做了介绍,并通过统计相关专利对该技术的发展趋势进行分析,总结该技术的重点申请人、重点专利和各技术分支具有代表性的专利。[结果/结论]结果表明,近年来公平机器学习技术处于快速发展中,美国在专利质量方面领先全球,而中国则在专利数量上占据优势。本文最后对该技术的发展方向提出建议,涵盖更广泛维度的可信机器学习将是该技术未来的发展方向。[Purpose/Significance]With the widespread application of artificial intelligence technology in daily life,human increasingly rely on the technology for various decisions.However,due to the biases in machine learning,AI often produces decision-making that is prejudiced,leading to discrimination against specific groups.Therefore,ensuring the fairness of machine learning technology is crucial.[Method/Process]This paper first lists the unfair phenomena caused by biased machine learning technologies.It then introduces fair machine learning technologies and analyzes their development trends through related patent information.The paper summarizes key applicants,important patents,and representative patents in each technological branch.[Result/Conclusion]The results indicate that the technology has been developing rapidly in recent years.The United States leads globally in terms of patent quality,while China holds an advantage in the quantity of patents.The paper concludes by suggesting that trustworthy machine learning covering a broader range of dimensions will be the future direction for this technology.

关 键 词:公平机器学习 数据矫正 模型训练 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] G306[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象