检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:巩拓 韩波 Gong Tuo;Han Bo(Dongfang Electronics Co.,Ltd.,Yantai,Shandong,China,264000)
出 处:《仪器仪表用户》2025年第1期96-98,共3页Instrumentation
摘 要:在现代电力系统中变电站扮演着至关重要的角色,它们负责电能的传输、分配以及转换,确保电力供应的稳定性和可靠性。人工智能(AI)算法,凭借其强大的数据处理能力和自学习能力,提供了一种新的解决方案。神经网络、遗传算法和深度学习等AI技术已被证明在负荷预测、故障检测和故障诊断等方面具有显著的应用潜力,为电力调度系统的优化带来了新的视角。本文深入探讨了人工智能算法在变电站电力调度系统优化中的应用,包括神经网络、遗传算法和深度学习等AI技术在负荷预测、故障检测及诊断等关键领域的具体应用场景,以及技术如何帮助提升电力调度系统的效率和可靠性。Substations play a crucial role in modern power systems,responsible for the transmission,distribution,and conversion of electrical energy to ensure the stability and reliability of power supply.Artificial intelligence(AI)algorithms,with their powerful data processing and self-learning capabilities,provide a new solution.AI technologies such as neural networks,genetic algorithms,and deep learning have proven to have significant application potential in areas such as load forecasting,fault detection,and fault diagnosis,bringing new perspectives to the optimization of power dispatch systems.This article delves into the application of AI algorithms in optimizing substation power dispatch systems,including the specific application scenarios of AI technologies such as neural networks,genetic algorithms,and deep learning in key areas such as load forecasting,fault detection,and diagnosis,as well as how these technologies help enhance the efficiency and reliability of power dispatch systems.
分 类 号:TM63[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7