检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩胜强 曲建华 Han Shengqiang;Qu Jianhua(Business School,Shandong Normal University,250358,Jinan,China)
出 处:《山东师范大学学报(自然科学版)》2024年第4期358-366,共9页Journal of Shandong Normal University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61876101,62102236)。
摘 要:图像聚类旨在挖掘图像数据潜在的模式与规则,研究针对现有方法依赖内在特征而忽视外在语义特征致聚类效果欠佳的问题,提出新的深度图像聚类方法。该方法借助CLIP (Contrastive Language-Image Pretraining)模型挖掘语义特征,构建跨模态融合策略整合图像与文本信息,结合Kmeans算法构建深度聚类框架。在STL-10、CIFAR-10和CIFAR-20数据集上与15种已有方法及CLIP零样本分类方法对比实验,实验结果表明本文提出的图像聚类方法的聚类性能在多个指标上得到了显著提升。Image clustering aims to mine the potential patterns and rules of image data.Existing methods rely primarily on intrinsic features while neglecting external semantic features,resulting in an issue of suboptimal clustering.For this,a novel deep image clustering method is proposed here.This method excavates semantic features through CLIP model,constructs a cross-modal fusion strategy to integrate image and text information,and builds a deep clustering framework combined with Kmeans algorithm.Compared with 15 existing methods and CLIP zero sample classification method in STL-10,CIFAR-10 and CIFAR-20 data sets,the results show that the proposed method significantly improves clustering performance in clustering accuracy(ACC),normalized mutual information(NMI) and adjusting the Rand index(ARI) index.The proposed method provides a new avenue for image clustering and is expected to advance the development of related fields.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.37.17