DenseGNN:universal and scalable deeper graph neural networks for highperformance property prediction in crystals and molecules  

在线阅读下载全文

作  者:Hongwei Du Jiamin Wang Jian Hui Lanting Zhang Hong Wang 

机构地区:[1]School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai,China [2]Zhangjiang Institute for Advanced Study,Shanghai Jiao Tong University,Shanghai,China [3]Materials Genome Initiative Center,Shanghai Jiao Tong University,Shanghai,China

出  处:《npj Computational Materials》2024年第1期95-110,共16页计算材料学(英文)

基  金:Weare grateful for the financial support fromthe National Key Research and Development Program of China(Grant Nos.2021YFB3702104).

摘  要:Moderngenerative modelsbasedondeep learning havemadeit possible to design millions of hypothetical materials.To screen these candidate materials and identify promising new materials,we need fast and accuratemodels to predictmaterial properties.Graphical neural networks(GNNs)have become a current research focusdue to their ability todirectly act on the graphical representationofmolecules andmaterials,enabling comprehensive capture of important information and showing excellent performance in predicting material properties.Nevertheless,GNNsstill face several key problems in practical applications:First,although existing nested graph network strategies increase critical structural information such as bond angles,they significantly increase the number of trainable parameters in the model,resulting in a increase in training costs;Second,extending GNN models to broader domains such as molecules,crystallinematerials,and catalysis,aswell as adapting to small data sets,remains a challenge.

关 键 词:properties materials PROPERTY 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象