检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ishraque Zaman Borshon Marco Ragone Abhijit H.Phakatkar Lance Long Reza Shahbazian-Yassar Farzad Mashayek Vitaliy Yurkiv
机构地区:[1]Department of Aerospace and Mechanical Engineering,University of Arizona,Tucson,AZ,85721,USA [2]Department of Mechanical and Industrial Engineering,University of Illinois Chicago,Chicago,IL,60607,USA [3]Department of Biomedical Engineering,University of Illinois Chicago,Chicago,IL,60607,USA [4]Electronic Visualization Laboratory,University of Illinois Chicago,Chicago,IL,60607,USA
出 处:《npj Computational Materials》2024年第1期289-302,共14页计算材料学(英文)
基 金:the National Science Foundation,award DMR-2311104,as well as CNS-1828265.
摘 要:A novel approach is presented by integrating images-driven deep learning(DL)with high entropy oxides(HEOs)analysis.A fully convolutional neural network(FCN)is used to interpret experimental scanning transmission electron microscopy(STEM)images ofHEO of various sizes.The FCN model is designed to predict column heights(CHs)and elemental distributions from single,experimentally acquired STEM images of complex(Mn,Fe,Ni,Cu,Zn)_(3)O_(4) HEO nanoparticles(NPs)at atomic resolution.The model’s ability to predict elemental distributions was tested across various crystallographic zones.It was found that the model could effectively adapt to different atomic configurations and operational conditions.One of the significant outcomes was the identification of substantial elemental inhomogeneities in all experimental NPs,which highlighted the random and complex nature of element distribution within HEOs.The developed FCNDL method can be applied to assist experimental HEO and beyond NP analysis in various operating conditions.
关 键 词:CONDITIONS ENTROPY OXIDES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.204.106