Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints  

在线阅读下载全文

作  者:Ryong-Gyu Lee Yong-Hoon Kim 

机构地区:[1]School of Electrical Engineering,Korea Advanced Institute of Science and Technology(KAIST),291 Daehak-ro,Yuseong-gu,Daejeon,34141,Korea

出  处:《npj Computational Materials》2024年第1期598-605,共8页计算材料学(英文)

基  金:supported by the National Research Foundation of Korea(2023R1A2C2003816 and RS-2023-00253716);Computational resources were provided by KISTI Supercomputing Center(KSC-2023-CRE-0476).

摘  要:The self-consistent field(SCF)generation of the three-dimensional(3D)electron density distribution(ρ)represents a fundamental aspect of density functional theory(DFT)and related first-principles calculations,and how one can shorten or bypass the SCF loop represents a critical question in electronic structure theory from both practical and fundamental standpoints.Herein,a machine learning strategy,DeepSCF,is presented in which the map between the SCFρand the initial guess density(ρ_(0))constructed by the summation of neutral atomic densities is learned using 3D convolutional neural networks(CNNs).

关 键 词:learning THEORY NEUTRAL 

分 类 号:H31[语言文字—英语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象