MD-HIT:Machine learning for material property prediction with dataset redundancy control  

在线阅读下载全文

作  者:Qin Li Nihang Fu Sadman Sadeed Omee Jianjun Hu 

机构地区:[1]College of Big Data and Statistics,Guizhou University of Finance and Economics,Guiyang,China [2]Department of Computer SCience and Engineering,University of South Carolina,Columbia,SC,USA

出  处:《npj Computational Materials》2024年第1期638-648,共11页计算材料学(英文)

基  金:supported in part by National Science Foundation under the grant number 2311202.

摘  要:Materials datasets usually contain many redundant(highly similar)materials due to the tinkering approach historically used in material design.This redundancy skews the performance evaluation of machine learning(ML)models when using random splitting,leading to overestimated predictive performance and poor performance on out-of-distribution samples.This issue is well-known in bioinformatics for protein function prediction,where tools like CD-HIT are used to reduce redundancy by ensuring sequence similarity among samples greater than a given threshold.In this paper,we survey the overestimated ML performance in materials science for material property prediction and propose MD-HIT,a redundancy reduction algorithm for material datasets.Applying MD-HIT to composition-and structure-based formation energy and band gap prediction problems,we demonstrate that with redundancy control,the prediction performances of the ML models on test sets tend to have relatively lower performance compared to the model with high redundancy,but better reflect models’true prediction capability.

关 键 词:PREDICTION PROPERTY performance 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象