Bayesian optimization acquisition functions for accelerated search of cluster expansion convex hull of multicomponent alloys  

在线阅读下载全文

作  者:Dongsheng Wen Victoria Tucker Michael S.Titus 

机构地区:[1]Department of Chemistry,University of Liverpool,Crown Street,Liverpool,L697ZD,UK [2]School of Materials Engineering,Purdue University,701 West Stadium Ave,West Lafayette,IN,47907,USA

出  处:《npj Computational Materials》2024年第1期1035-1047,共13页计算材料学(英文)

基  金:supported by the National Science Foundation under Grant No.(CAREER DMR-1848128);This research was supported in part through computational resources provided by Information Technology at Purdue,West Lafayette,Indiana^(40).D.W.would like to thank the University of Liverpool Library for Open Access Funds。

摘  要:Atomistic simulations are crucial for predicting material properties and understanding phase stability,essential for materials selection and development.However,the high computational cost of density functional theory calculations challenges the design of materials with complex structures and composition.This study introduces new data acquisition strategies using Bayesian-Gaussian optimization that efficiently integrate the geometry of the convex hull to optimize the yield of batch experiments.We developed uncertainty-based acquisition functions to prioritize the computation tasks of configurations of multi-component alloys,enhancing our ability to identify the ground-state line.

关 键 词:alloys OPTIMIZATION CLUSTER 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象