Higher-order equivariant neural networks for charge density prediction in materials  

在线阅读下载全文

作  者:Teddy Koker Keegan Quigley Eric Taw Kevin Tibbetts Lin Li 

机构地区:[1]MIT Lincoln Laboratory,Lexington,MA,USA [2]Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,CA,USA

出  处:《npj Computational Materials》2024年第1期1566-1575,共10页计算材料学(英文)

基  金:supported by the Under Secretary of Defense for Research and Engineeringunder Air Force Contract No.FA8702-15-D-0001.

摘  要:The calculation of electron density distribution using density functional theory(DFT)in materials and molecules is central to the study of their quantum and macro-scale properties,yet accurate and efficient calculation remains a long-standing challenge.Weintroduce ChargE3Net,an E(3)-equivariant graph neural network for predicting electron density in atomic systems.ChargE3Net enables the learning of higher-order equivariant features to achieve high predictive accuracy and model expressivity.

关 键 词:EQUIVARIANT CHARGE enable 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象