检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sadman Sadeed Omee Nihang Fu Rongzhi Dong Ming Hu Jianjun Hu
机构地区:[1]Department of Computer Science and Engineering,University of South Carolina,Columbia,SC,USA [2]Department of Mechanical Engineering,University of South Carolina,Columbia,SC,USA
出 处:《npj Computational Materials》2024年第1期1753-1766,共14页计算材料学(英文)
基 金:supported in part by National Science Foundation under the grants 2110033,OAC-2311203,and 2320292.
摘 要:In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known materials.It is thus a pressing question to provide an objective evaluation ofMLmodel performances in property prediction of out-ofdistribution(OOD)materials that are different fromthe training set.Traditional performance evaluation of materials property prediction models through the random splitting of the dataset frequently results in artificially high-performance assessments due to the inherent redundancy of typical material datasets.
关 键 词:PROPERTY PREDICTION DISTRIBUTION
分 类 号:TG1[金属学及工艺—金属学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49