Structure-based out-of-distribution(OOD)materials property prediction:a benchmark study  

在线阅读下载全文

作  者:Sadman Sadeed Omee Nihang Fu Rongzhi Dong Ming Hu Jianjun Hu 

机构地区:[1]Department of Computer Science and Engineering,University of South Carolina,Columbia,SC,USA [2]Department of Mechanical Engineering,University of South Carolina,Columbia,SC,USA

出  处:《npj Computational Materials》2024年第1期1753-1766,共14页计算材料学(英文)

基  金:supported in part by National Science Foundation under the grants 2110033,OAC-2311203,and 2320292.

摘  要:In real-world materials research,machine learning(ML)models are usually expected to predict and discover novel exceptional materials that deviate from the known materials.It is thus a pressing question to provide an objective evaluation ofMLmodel performances in property prediction of out-ofdistribution(OOD)materials that are different fromthe training set.Traditional performance evaluation of materials property prediction models through the random splitting of the dataset frequently results in artificially high-performance assessments due to the inherent redundancy of typical material datasets.

关 键 词:PROPERTY PREDICTION DISTRIBUTION 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象