Deep learning with plasma plume image sequences for anomaly detection and prediction of growth kinetics during pulsed laser deposition  

在线阅读下载全文

作  者:Sumner B.Harris Christopher M.Rouleau Kai Xiao Rama K.Vasudevan 

机构地区:[1]Center for Nanophase Materials Sciences,Oak Ridge National Laboratory,Oak Ridge,TN 37831,USA

出  处:《npj Computational Materials》2024年第1期2162-2169,共8页计算材料学(英文)

基  金:supported by the Center for Nanophase Materials Sciences(CNMS),which is a US Department of Energy,Office of Science User Facility at Oak Ridge National Laboratory;supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC05-00OR22725.

摘  要:Materials synthesis platforms that are designed for autonomous experimentation are capable of collecting multimodal diagnostic data that can be utilized for feedback to optimize material properties.Pulsed laser deposition(PLD)is emerging as a viable autonomous synthesis tool,and so the need arises to develop machine learning(ML)techniques that are capable of extracting information from in situ diagnostics.Here,we demonstrate that intensified-CCD image sequences of the plasma plume generated during PLD can be used for anomaly detection and the prediction of thin film growth kinetics.

关 键 词:PREDICTION IMAGE SEQUENCES 

分 类 号:TN2[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象