Principal component analysis enables the design of deep learning potential precisely capturing LLZO phase transitions  

在线阅读下载全文

作  者:Yiwei You Dexin Zhang Fulun Wu Xinrui Cao Yang Sun Zi-Zhong Zhu Shunqing Wu 

机构地区:[1]Department of Physics,OSED,Key Laboratory of Low Dimensional Condensed Matter Physics(Department of Education of Fujian Province),Xiamen University,Xiamen 361005,China [2]Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry,Xiamen University,Xiamen 361005,China

出  处:《npj Computational Materials》2024年第1期2648-2656,共9页计算材料学(英文)

基  金:supported by the National Natural Science Foundation of China(11874307).

摘  要:The development of accurate and efficient interatomic potentials using machine learning has emerged as an important approach in materials simulations and discovery.However,the systematic construction of diverse,converged training sets remains challenging.

关 键 词:TRANSITIONS enable precisely 

分 类 号:O73[理学—晶体学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象