检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许文燕 李海 陈李盛 XU Wenyan;LI Hai;CHEN Lisheng(College of Intelligent Engineering,Guangzhou Nanyang Polytechnic College,Guangzhou 510925,China;School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510000,China)
机构地区:[1]广州南洋理工职业学院智能工程学院,广东广州510925 [2]华南理工大学机械与汽车工程学院,广东广州510000
出 处:《五邑大学学报(自然科学版)》2025年第1期63-70,共8页Journal of Wuyi University(Natural Science Edition)
基 金:国家自然科学基金资助项目(51905176);广东省普通高校青年创新人才项目(2024KQNCX215);广州南洋理工职业学院校级科研项目(NY-2023KYYB-04)。
摘 要:为实现林间荔枝快速准确检测,本研究提出了一种基于YOLOv4-Tiny改进的荔枝轻量化检测方法.通过在主干网络加入SPP模块和在颈部网络加入ECA模块,提升模型对小目标荔枝的识别效果和在复杂背景下的检测性能,消融实验验证了改进方法的有效性.利用林间荔枝图像数据集训练了改进的模型,并分析了改进前后的性能差异,结果显示,改进后的模型检测速度为54帧/秒,精确率、召回率、平均精度分别为99.20%、82.88%、95.49%.与SSD、Faster RCNN及YOLOv4-Tiny模型相比,改进后的模型平均精度提升了15.23%、17.33%、5.57%,召回率提升了10.98%、11.52%、7.22%.本研究可为荔枝的生长监测、机械采摘和人工估产等提供技术支持.To achieve fast and accurate detection of lychee in the forest,this study proposes a lightweight detection method for lychee based on YOLOv4-Tiny improvement.By adding SPP module to the backbone network and ECA module to the neck network,the model improves the recognition effect of small-target lychee and the detection performance in complex backgrounds,and the ablation experiments verify the effectiveness of the improved method.The improved model was trained using the forest lychee image dataset,and the performance differences before and after the improvement were analyzed,and the results show that the improved model detects as fast as 54 frames/second,and the precision,recall,and average accuracy are 99.20%,82.88%,and 95.49%,respectively.Compared with SSD,Faster RCNN,and YOLOv4-Tiny model,the improved model boosted the average precision by 15.23%,17.33%,and 5.57%respectively,and the recall by 10.98%,11.52%,and 7.22%respectively.This study can provide technical support for research related to growth monitoring,mechanical harvesting and artificial yield estimation of lychee fruit.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.197