TWO FAMILIES OF n-RECTANGLE NONCONFORMING FINITE ELEMENTS FOR SIXTH-ORDER ELLIPTIC EQUATIONS  

在线阅读下载全文

作  者:Xianlin Jin Shuonan Wu 

机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Journal of Computational Mathematics》2025年第1期121-142,共22页计算数学(英文)

基  金:supported in part by the National Natural Science Foundation of China(Grant No.12222101).

摘  要:In this paper, we propose two families of nonconforming finite elements on n-rectangle meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property and the approximation ability of the new finite element spaces are established. A new mechanism, called the exchange of sub-rectangles, for investigating the weak continuities of the proposed elements is discovered. With the help of some conforming relatives for the H^(3) problems, we establish the quasi-optimal error estimate for the triharmonic equation in the broken H^(3) norm of any dimension. The theoretical results are validated further by the numerical tests in both 2D and 3D situations.

关 键 词:Nonconforming finite element method n-Rectangle element Sixth-order elliptic equation Exchange of sub-rectangles 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象