液氢储罐用TAS31608-LH奥氏体不锈钢的热变形行为  

Thermal deformation behavior of TAS31608-LH austenitic stainless steel for liquid hydrogen storage tanks

作  者:陈浩东 肖桂枝[1] 惠朋博 张郑[1] 邹德宁[1,2] CHEN Haodong;XIAO Guizhi;HUI Pengbo;ZHANG Zheng;ZOU Dening(School of Metallurgical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,Shaanxi,China;Engineering Research Center on Additive Manufacturing Technology and Application in Universities of Shaanxi Province,Xi’an Siyuan University,Xi’an 710038,Shaanxi,China)

机构地区:[1]西安建筑科技大学冶金工程学院,陕西西安710055 [2]西安思源学院增材制造技术应用陕西省高校工程研究中心,陕西西安710038

出  处:《钢铁》2025年第1期137-146,共10页Iron and Steel

基  金:山西省重点研发计划资助项目(202202050201019);国家自然科学基金资助项目(52271067)。

摘  要:氢能是21世纪最具潜力的清洁能源之一,低温液态储氢作为一种高效储氢方式已被业内采用,TAS31608-LH是太钢不锈钢股份有限公司专门研发生产的液氢储罐用材。该材料在超低温(-253℃)工况使用,对其组织及综合性能要求极高,因此对直接影响材料微观组织的热变形行为开展研究非常有必要。研究试料取自工业化生产的连铸坯,进行了变形温度为950~1200℃、应变速率为0.01~10 s^(-1)的热压缩试验;依据真应力-应变曲线研究了材料的热变形行为,并建立了变形参数与流变应力关系的Arrihenius及BP神经网络本构模型;基于动态材料模型构建了热加工图,并结合微观组织分析确定材料的最佳热加工区间。研究表明,TAS31608-LH的流变应力随温度升高及应变速率降低而减小,变形温度对材料软化机制影响较大,低于1050℃时真应力-应变曲线主要为动态回复型,而当温度高于1050℃时,曲线逐渐转化为动态再结晶型。构建的BP神经网络本构模型训练样本更多,预测范围更广,比经应变补偿的Arrihenius模型的预测精度更高。依据构建的热加工图,分析研究了不同变形条件下的微观组织,验证了热加工图的可靠性,并确定TAS31608-LH的最佳变形条件为热加工区间1150~1200℃、应变速率10 s^(-1)。另外,研究发现连铸坯凝固残留的δ-铁素体对热变形过程奥氏体的动态再结晶具有激发作用,会导致整体微观组织尺寸及分布出现不均匀现象。Hydrogen energy is one of the most promising clean energy sources in the 21st century.Low temperature liquid hydrogen storage has been adopted as an efficient hydrogen storage method in the industry.TAS31608-LH is liquid hydrogen storage tank material and produced by Taiyuan Iron and Steel Stainless Steel Co.,Ltd.This material is used at ultra-low temperatures(-253℃),which puts extremely high requirements on the microstructure and comprehensive properties.So it is necessary to conduct research on the thermal deformation behavior that directly affects the microstructure of materials.The hot compression experiments of continuous casting billets taken from industrial production was studied,with deformation temperatures ranging from 950℃to 1200℃and strain rates ranging from 0.01 s^(-1) to 10 s^(-1).Based on the true stress-strain curve,the thermal deformation behavior of the material was studied,and Arrihenius and BP neural network constitutive models were established for the relationship between deformation parameters and rheological stress.The hot working diagram was constructed based on a dynamic material model,and the optimal hot working range of the material was determined through microstructure analysis.Research has shown that the rheological stress of TAS31608-LH decreases with increasing temperature and decreasing strain rate.The deformation temperature has significant impact on the softening mechanism of materials.When the temperature is below 1050℃,the true stress-strain curve is mainly of dynamic recovery type,while when the temperature is above 1050℃,the curve gradually transforms into dynamic recrystallization type.BP neural network constitutive model has more training samples and wider prediction range,resulting in higher prediction accuracy than the Arrihenius model with strain compensation.Based on the hot working diagram,the microstructure under different deformation conditions was analyzed,and the reliability of the hot working diagram was verified.The optimal hot working range for TAS3160

关 键 词:TAS31608-LH奥氏体不锈钢 热压缩试验 真应力-应变曲线 本构模型 热加工图 液氢储罐 钢铁材料 氢能 

分 类 号:TG142.71[一般工业技术—材料科学与工程] TK91[金属学及工艺—金属材料]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象