基于大语言模型和RAG的持续交付智能问答系统  

Continuous Delivery Intelligent Question-answering System Based on Large Language Models and RAG

作  者:鞠炜刚[1] 汪鹏[2] 王佳[1] JU Wei-gang;WANG Peng;WANG Jia(ZTE Corporation,Nanjing 210012,China;Southeast University,Nanjing 210096,China)

机构地区:[1]中兴通讯股份有限公司,江苏南京210012 [2]东南大学,江苏南京210096

出  处:《计算机技术与发展》2025年第2期107-114,共8页Computer Technology and Development

基  金:国家自然科学基金资助项目(62376057)。

摘  要:持续交付是一种持续的将各类变更快速、高质量地落实到生产环境的方法和技术,对提升产品竞争力越来越重要。因此迫切需要对持续交付进行规划、建设和应用,但其知识范围广、专业性强、更新快,难以有效及时获取指导和帮助,影响实施效果。针对该问题,提出了一种基于大语言模型和检索增强生成(RAG)的持续交付智能问答系统构建方法。该方法通过高质量语料处理形成数据集,采用高效微调技术训练领域大模型,使用改进的向量知识检索并结合提示词工程的多场景提示词模板技术增强生成效果,实现了一种持续交付智能问答系统。实验结果表明,该系统对持续交付各环节的知识问答覆盖场景范围广,能有效提升回答的准确性,降低幻觉率,效果明显,从而极大帮助了持续交付的规划、实施和应用。提出的方法和技术具备很强的通用性,可以向更多领域的智能问答推广应用。Continuous Delivery(CD)is a method and technology for continuously implementing various changes rapidly and with high quality into production environments,which is becoming increasingly important for enhancing product competitiveness.Therefore,there is an urgent need to plan,build,and apply CD practices,but its broad knowledge base,specialized nature,and rapid updates make it difficult to effectively and timely obtain guidance and assistance,affecting implementation effect.To address this issue,we propose a construction method for a CD intelligent question-answering system based on large language models and Retrieval-Augmented Generation(RAG).The method involves forming a dataset through high-quality corpus processing,training domain-specific large models using efficient fine-tuning techniques,and employing improved vector knowledge retrieval combined with multi-scenario prompt templates enhanced by prompt engineering to improve the generation effect.The implementation resulted in a CD intelligent question-answering system.Experimental results show that the system covers a wide range of scenarios for knowledge questions and answers related to CD,effectively improves the accuracy of responses,reduces hallucination rates,and demonstrates significant effects,thereby greatly assisting in the planning,implementation,and application of CD.The proposed methods and technologies possess strong generalizability and can be extended to intelligent question-answering applications in more fields.

关 键 词:持续交付 智能问答 大语言模型 检索增强生成 提示词工程 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象