检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱红[1] 胡新雨 高莉莎 张强 徐晓轶 朱盟盟 ZHU Hong;HU Xin-yu;GAO Li-sha;ZHANG Qiang;XU Xiao-yi;ZHU Meng-meng(State Grid Nanjing Power Supply Company,Nanjing 210009,China;State Grid Nantong Electric Power Co.,Ltd.,Nantong 226000,China;State Grid Smart Grid Research Institute Co.,Ltd.,Beijing 102200,China;Suzhou Huatian Guoke Electric Power Technology Co.,Ltd.,Suzhou 215000,China)
机构地区:[1]国网南京供电公司,江苏南京210009 [2]国网南通供电公司,江苏南通226000 [3]国网智能电网研究院有限公司,北京102200 [4]苏州华天国科电力科技有限公司,江苏苏州215000
出 处:《计算机技术与发展》2025年第2期138-145,共8页Computer Technology and Development
基 金:国家电网公司总部科技项目(5700-202318598A-3-2-ZN)。
摘 要:知识图谱嵌入(Knowledge Graph Embedding,KGE)将实体和关系表示为低维、连续的向量,使机器学习模型能够轻松适应知识图谱(Knowledge Graph,KG)的搜索任务。然而,在大规模知识库(Knowledge Base,KB)的搜索密集型应用中,现有的模型大多侧重于提高在静态KG上搜索的准确性,忽略了在动态时态知识图谱(Temporal Knowledge Graph,TKG)上搜索的时间效率。为此,提出了一种向量索引支持的TKG高效搜索方法,以提高在TKG上的搜索效率。具体来说,首先,将实体,关系和时间信息映射到向量空间,并利用长短期记忆神经网络(Long Short-Term Memory,LSTM)学习关系类型的时间感知,从而建立了具有时间信息感知与关系联合编码的TKG向量库。然后,利用向量数据库建立大规模TKG的向量索引库(IndexIVFFlat)。注意,该索引通过聚类操作来划分搜索空间,以提高知识的搜索效率。最后,在拥有高效索引的TKG上通过相似度计算执行近似性搜索与实验评估。结果显示,该方法在时间效率上优于未建立索引的方法,且在搜索准确度上优于一些强相关的方法。表明,该向量索引库的建立在保证了搜索准确性的前提下提高了在TKG上的搜索效率。Knowledge graph embedding(KGE)represents entities and relations as low-dimensional,continuous vectors,thus enabling machine learning models to be easily adapted to knowledge graph(KG)search task.However,in search-intensive applications of large-scale knowledge base(KB),most of the existing models focus on improving the accuracy of searching on static KGs,while neglecting the time efficiency of searching on dynamic temporal knowledge graph(TKG).To this end,an efficient search method for TKG supported by vector indexing is proposed to improve the search efficiency on TKG.Specifically,firstly,the entity,relation and time information are mapped to the vector space,and the time-awareness of relation types is learned using the Long Short-Term Memory(LSTM)neural network,which leads to the establishment of the TKG vector database with the joint encoding of time information awareness and relation.Then,the vector database is utilized to build a vector indexing database(IndexIVFFlat)for large-scale TKGs.Note that the index divides the search space by clustering operations to improve the search efficiency of knowledge.Finally,approximation search and experimental evaluation are performed by similarity computation on the TKG with efficient indexing.Results show that the proposed method outperforms the unindexed method in time efficiency and outperforms some strongly correlated methods in search accuracy.It is demonstrated that the establishment of this vector indexing database improves the search efficiency on the TKG under the guarantee of the search accuracy.
关 键 词:知识图谱嵌入 时态知识图谱 索引 搜索 向量数据库 机器学习
分 类 号:TP305[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.192.101